Accomplish X-ray and gamma-ray images with multicolor by energy differentiation

FEATURES

- High radiation detection efficiency due to direct conversion type semiconductor (CdTe) detector
- Simultaneous energy differentiation of input radiation photons by setting 5 different energy thresholds
- Parallel signal readout from each pixel
- High counting efficiency
- Eliminating effect from beam scattering and hardening by energy differentiation function
- Wide energy measurement range covering X-rays and gamma-rays spectral regions

Application 1: Simultaneous measurement of images at different energy regions

Images were measured by linear scanning over radioisotopes (RI) with the radiation line sensor. Energy-differentiated imaging allows color visualization and identification of different radioisotopes. Images from different radioisotopes can be visualized by energy discrimination for easy color identification.

Images obtained without energy differentiation: shows only the radiation intensity distribution

Image obtained with 137Cs only (Energy: 140 keV or higher)

Image obtained with 57Co only (Energy: 70 keV to 140 keV)

Image obtained with 241Am only (Energy: 35 keV to 70 keV)

The output data of this sensor is the number of radiation photons differentiated with five comparators in each detection element. The display in color is construction as for this number of photons.

- High radiation detection efficiency due to direct conversion type semiconductor (CdTe) detector
- Simultaneous energy differentiation of input radiation photons by setting 5 different energy thresholds
- Parallel signal readout from each pixel
- High counting efficiency
- Eliminating effect from beam scattering and hardening by energy differentiation function
- Wide energy measurement range covering X-rays and gamma-rays spectral regions

* RI: radioisotope

Images obtained with 137Cs only (Energy: 140 keV or higher)

Image obtained with 57Co only (Energy: 70 keV to 140 keV)

Image obtained with 241Am only (Energy: 35 keV to 70 keV)

The display in color is construction as for this number of photons.
Signal pulses from each detector pixel are differentiated by the five comparators according to their energy levels. These signal pulses are then counted by the five counters and output as the number of photon counting pulses.

Application 2: Simultaneous measurement of images at different energy regions

Images obtained by energy differentiation with 5 different energy thresholds

Composition of energy-differentiated images for image enhancement of materials

Images were measured with the radiation line sensor by linear scanning of a sample placed between an X-ray source (150 kV) and the radiation line sensor.
Application 3: Eliminating effect from beam scattering and hardening

Images obtained without energy differentiation are subject to effects from scattered rays and beam hardening. These scattered rays and beam hardening can be eliminated by setting the proper energy differentiation levels.

Sample of aluminum cylinder with a copper, iron, titanium and carbon rods inserted inside the cylinder

Image obtained without energy differentiation (20 keV to 150 keV)

Energy-differentiated image (90 keV or higher)

Application 4: Gamma-ray and X-ray spectrum measurement

Highly detailed spectrum measurements can be made by auto sweep of the comparator levels.

57Co spectrum measurement

The output data of this sensor is the number of radiation photons differentiated with five comparators in each detection element.

The display in color is construction as for this number of photons.
Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description / Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector element</td>
<td>Direct conversion type semiconductor (Cadmium telluride: CdTe) detector</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>64</td>
</tr>
<tr>
<td>Pixel pitch</td>
<td>1 mm</td>
</tr>
<tr>
<td>Energy measurement range</td>
<td>30 keV to 1000 keV</td>
</tr>
<tr>
<td>Energy resolution</td>
<td>FWHM ≤ 15 % (at 122 keV: 57Co)</td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>82 % (at 150 keV)</td>
</tr>
<tr>
<td>Number of energy thresholds</td>
<td>5 (Thresholds can be set at any levels within energy)</td>
</tr>
<tr>
<td>Maximum count rate per channel</td>
<td>2 × 10^6 s⁻¹</td>
</tr>
<tr>
<td>Integration time (1 line)</td>
<td>1 ms to 4095 ms</td>
</tr>
<tr>
<td>Counter</td>
<td>16 bit</td>
</tr>
<tr>
<td>Interface</td>
<td>USB 2.0</td>
</tr>
<tr>
<td>Output</td>
<td>Counter value (16 bits)</td>
</tr>
<tr>
<td>Data output format</td>
<td>Windows® 7 (32 bit, 64 bit)</td>
</tr>
<tr>
<td>External start trigger</td>
<td>TTL</td>
</tr>
<tr>
<td>Input voltage</td>
<td>DC 12 V (AC adapter is supplied. AC 100 V to AC 240 V)</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>+5 °C to +30 °C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-10 °C to +60 °C</td>
</tr>
<tr>
<td>Operating humidity range</td>
<td>below 85 % (no condensation)</td>
</tr>
<tr>
<td>Storage humidity range</td>
<td>below 85 % (no condensation)</td>
</tr>
<tr>
<td>Dimensions (W × H × D)</td>
<td>150 mm × 64 mm × 246 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>2300 g</td>
</tr>
</tbody>
</table>

NOTE:
- [A] These parameters depend on input radiation photon energy and measurement conditions.
- [B] The output data of this sensor is the number of radiation photons differentiated with five comparators in each detection element.

Dimensional Outlines (Unit: mm)

![Dimensional Outlines Diagram]

Connection Example

![Connection Example Diagram]

NOTE:
- The customer must procure imaging software.

Windows® is a registered trademark of Microsoft Corporation in the United States and/or other countries.

Other product and software names mentioned herein may be either registered trademarks or trademarks of their respective owners.

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office.

Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2014 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K. www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division

314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205

U.S.A.: Hamamatsu Corporation: 360 Post Road West, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0960; Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com

Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de

France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr

United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Whale Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk

North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 35 SE-164 40 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Italy: Hamamatsu Photonics Italia S.R.L.: Strada della Mosa, 1 int. 6, 20020 Areas (Milano), Italy, Telephone: (39)02-93581773, Fax: (39)02-93581741 E-mail: info@hamamatsu.it

China: Hamamatsu Photonics (China) Co., Ltd.: 8101 Shunyuan Sunshine Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (86)10-6588-6006, Fax: (86)10-6588-2866 E-mail: hpc@hamamatsu.com.cn

TAPP1066E03

NOV. 2014 IP