Improved detection limit for near infrared (to 900 nm)

FEATURES
- Low dark current (1/50 of that at room temperature)
- Fast cooling (3 minutes) by thermoelectric cooler directly coupled to the photocathode
- Wide dynamic range
- Free of condensation

APPLICATIONS
- NOx Gas Detection
- Fluorescence Detection (LIF, Fluorescence Spectrophotometer)
- Chemiluminescence Detection
- NIR Spectroscopy

COOLING SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description / Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Method</td>
<td>Thermoelectric cooling</td>
<td>—</td>
</tr>
<tr>
<td>Max. Cooling Temperature ((\Delta T)) *1 *2</td>
<td>20</td>
<td>°C</td>
</tr>
<tr>
<td>Cooling Time *1</td>
<td>Approx. 3</td>
<td>min</td>
</tr>
</tbody>
</table>

*1: Input current to thermoelectric cooler = 2.1 A *2: Photocathode temperature difference from ambient

COOLING CHARACTERISTICS

- **S/N Ratio During Cooling**

 ![Graph showing the SN ratio during cooling](image)

 - Light Source: LED 850 nm
 - Energy: \(4.9 \times 10^{-14} \text{ W}\)
 - Data Acquisition Speed: 8 times/s

- **Anode dark current after cooling has started**

 ![Graph showing the anode dark current](image)

 - Control Voltage: +1.0 V
 - PMT Supply Voltage: -1000 V

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable; however, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2013 Hamamatsu Photonics K.K.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>+11.5 to +15.5</td>
<td>V</td>
</tr>
<tr>
<td>Max. Input Voltage for Main Unit</td>
<td>+18</td>
<td>V</td>
</tr>
<tr>
<td>Max. Input Current for Main Unit</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>Max. Input Voltage for Thermoelectric Cooler</td>
<td>3.75</td>
<td>V</td>
</tr>
<tr>
<td>Max. Input Current for Thermoelectric Cooler</td>
<td>3.9</td>
<td>Ω</td>
</tr>
<tr>
<td>Max. Output Signal Current</td>
<td>58</td>
<td>µA</td>
</tr>
<tr>
<td>Max. Control Voltage</td>
<td>+1.2 (Input impedance: 100 kΩ)</td>
<td>V</td>
</tr>
<tr>
<td>Recommended Control Voltage Adjustment Range</td>
<td>+0.3 to +1.1</td>
<td>V</td>
</tr>
<tr>
<td>Effective Area</td>
<td>10 × 14</td>
<td>mm</td>
</tr>
<tr>
<td>Spectral Response Range</td>
<td>185 to 900</td>
<td>nm</td>
</tr>
<tr>
<td>Peak Sensitivity Wavelength</td>
<td>400</td>
<td>nm</td>
</tr>
<tr>
<td>Luminous Sensitivity Min.</td>
<td>140</td>
<td>µA/lm</td>
</tr>
<tr>
<td>Luminous Sensitivity Typ.</td>
<td>300</td>
<td>µA/lm</td>
</tr>
<tr>
<td>Blue Sensitivity Index (CS 5-58)</td>
<td>9.0</td>
<td>—</td>
</tr>
<tr>
<td>Red / White Ratio (R-68)</td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td>Radiant Sensitivity *3</td>
<td>76</td>
<td>mA/W</td>
</tr>
<tr>
<td>Luminous Sensitivity Min.</td>
<td>400</td>
<td>A/lm</td>
</tr>
<tr>
<td>Luminous Sensitivity Typ.</td>
<td>3000</td>
<td>A/lm</td>
</tr>
<tr>
<td>Radiant Sensitivity *3 *4</td>
<td>7.6 × 10⁵</td>
<td>A/W</td>
</tr>
<tr>
<td>Radiant Sensitivity *3 *4 *5</td>
<td>1.0 × 10⁷</td>
<td>—</td>
</tr>
<tr>
<td>Dark Current *4 *5</td>
<td>0.1</td>
<td>nA</td>
</tr>
<tr>
<td>Equivalent Noise Input (ENI) *3 *4 *5</td>
<td>2.4 × 10⁻¹⁷</td>
<td>W</td>
</tr>
<tr>
<td>Rise Time *4</td>
<td>2.2</td>
<td>ns</td>
</tr>
<tr>
<td>Settling Time *5</td>
<td>0.2</td>
<td>s</td>
</tr>
<tr>
<td>Operating Ambient Temperature *7</td>
<td>+5 to +40</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature *7</td>
<td>-20 to +50</td>
<td>°C</td>
</tr>
<tr>
<td>Weight</td>
<td>296</td>
<td>g</td>
</tr>
</tbody>
</table>

*3: At peak sensitivity wavelength
*4: Control voltage +1.0 V (PMT supply voltage -1000 V), with cooler operated
*5: After 30 minutes storage in darkness
*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V.
*7: No condensation

CHARACTERISTICS

Spectral Response

![Spectral Response Graph](image)

Equivalent Noise Input (ENI)

![Equivalent Noise Input Graph](image)
Sensitivity Adjustment and Cooling Operation

Gain vs. Control Voltage

![Graph showing the relationship between gain and control voltage.]

Plateau Characteristic

![Graph showing the plateau characteristic.]

Sensitivity Adjustment and Cooling Operation

Voltage Programming
- Power supply for cooling fan: +12 V to GND
- Power supply for thermoelectric cooler: +3.2 V to 2 A to 2.8 A

Resistance Programming
- Power supply for cooling fan: +12 V to GND
- Power supply for thermoelectric cooler: +3.2 V to 2 A to 2.8 A

- Adjust the control voltage when adjusting the anode sensitivity of the PMT.
- Electrically isolate the reference voltage output. (This output is not used.)
- Low voltage input can also be used to supply the power to the cooling fan. In this case, the low voltage input must be set to +12 V.
- Always run the cooling fan while the thermoelectric cooler is operating.

- Monitor the control voltage when adjusting the anode sensitivity of the PMT with a trimmer potentiometer.
- A C-mount adaptor is available for H7844. (Sold separately)
PHOTOSENSOR MODULE
WITH THERMEOLECTRIC COOLER H7844

DIMENSIONAL OUTLINE (Unit: mm)
*Dimensional tolerance is ±0.5 mm unless otherwise specified.

When installing the H7844 photosensor module, be sure to allow enough space around the cooling fan for heat dissipation.

ACCESSORIES (Supplied)

Power cable with connector (HIROSE HR10A-7P-6S)
- BLACK: GND
- WHITE: +15 V
- BLUE: +1.2 V

Thermoelectric cooler cable (JST SLP-02V)
- GND: AWG18 (GREEN)
- RED: AWG18 (ORANGE, +3.2 V, 2 A to 2.8 A)

Cooling fan lead wire (AMP 179228-3)
- BLACK: GND
- RED: +12 V
- WHITE: +24 V

HAMAMATSU PHOTONICS K.K.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Electron Tube Division
314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P. O. Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com
Germany: Hamamatsu Photonics Deutschland GmbH, Arztengasse 14, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L., 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr
United Kingdom: Hamamatsu Photonics UK Limited, 2 Howard Court, 10 Tawin Road Welwyn Garden City Hertfordshire AL7 1BW, United Kingdom, Telephone: 44-(0)1707-294888, Fax: 44(0)1707-325777 E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Norden AB: Thorshamnsgatan 35 SE-164 40 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se
Italy: Hamamatsu Photonics Italia S.R.L., Strada delle Moia, 1/E, 20020 Arase, (Milano), Italy, Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it
China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jianing Center, 27 Donganhu Road North, Chaoyang District, Beijing 100020, China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2666 E-mail: info@hamamatsu.com.cn