Digital Cameras for Scientific Imaging
Changing the game of scientific imaging

ORCA®-Flash 4.0 v2
Featuring the Gen II scientific CMOS image sensor
- 4.0 megapixels scientific CMOS with over QE 70 % peak
- Very low readout noise (0.9 electrons at slow scan)
- 100 frames/s readout (up to 25 655 frames/s by sub-array readout)
- High dynamic range (33 000:1)
- High resolution and short exposure times combined
- Low noise and fast readout time simultaneously
- Outstanding image uniformity (no fixed pattern noise)
- Wider field of view than EM-CCD (512 × 512 pixels)
- Two scan speeds (standard scan / slow scan)

Sample images

The original high speed, low noise sCMOS camera

ORCA®-Flash 2.8
Featuring the scientific CMOS image sensor
- 2.8 megapixels scientific CMOS with QE 70 % peak
- Very low readout noise (3 electrons rms)
- 45 frames/s readout (up to 1273 frames/s by sub-array readout)
- High dynamic range (4500:1)
- High resolution and short exposure times combined
- Low noise and fast readout time simultaneously
- Outstanding image uniformity (no fixed pattern noise)
- Wider field of view than CCD (2/3 inch, 1.3 megapixels)

Sample images

Sample: High-sensitivity, high-resolution imaging

- Superimposed trichrome stain (Sample: FluoCells prepared slide H2)

Sample: High-speed imaging

- Spinning disk confocal
- TIRF

Sample: Superimposed trichrome stain (Sample: FluoCells prepared slide H2)

Sample: Spontaneous Ca²⁺ change of Fluo-4-loaded INS-1 cells
Acquisition setting: 45 fps (exposure time: 22ms)
ORCA-R²

- 1.37 megapixels interline CCD with QE over 70 % peak
- 14 MHz and 28 MHz readout modes included
- 12 bit and 16 bit digitizers are included and software selectable.
- Air and water cooling capabilities are standard.
- High resolution and short exposure times combined
- Choice of very low noise or very fast readout to suit applications
- Choice of bit depth to suit data and precision needs
- Long exposures with very low dark current and no vibration

ORCA-D²

- 1.37 megapixels interline CCD (× 2 chips) with QE over 70 % peak
- 11.2 frames/s readout (up to 33.5 frames/s by 4 × 4 binning)
- Selectable wavelengths (changing optical blocks)
- Auto-correction of focus and alignment
- Simultaneous capture of wide-field dual wavelength images
- Dual focal plane imaging microscopy
- During image capture, the camera automatically corrects focus, alignment and color shifting to produce high-quality images

ORCA-3CCD

- Total 4.13 megapixels on 3 progressive scan interline CCD chips
- 36 bit color resolution
- Cooled R, G and B CCDs with independent exposure settings
- High spatial resolution images of multicolor specimens in brightfield and fluorescence
- Great color fidelity with superb backgrounds
- Tremendous dynamic range of separate fluorophores

ORCA-03G, ORCA-05G

- 1.37 megapixels interline CCD with QE over 70 % peak
- Compact head with single cable and no controller
- Wide spectral range from 400 nm to NIR region
- 14.7 MHz readout at 12 bit
- High resolution and short exposure times combined
- Fits into any laboratory space or setup
- Good for both bright fluorescence and NIR-DIC
- ORCA-03G model includes peltier cooling for extended exposures
Camera specification comparison

<table>
<thead>
<tr>
<th>Model name</th>
<th>ORCA-Flash4.0 V2</th>
<th>ORCA-Flash2.8</th>
<th>ORCA-R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type number</td>
<td>C11440-22CU</td>
<td>C11440-10C</td>
<td>C10650-108</td>
</tr>
<tr>
<td>Imaging device</td>
<td>FL-400 scientific CMOS</td>
<td>FL-280 scientific CMOS</td>
<td>ER-150 progressive scan interline CCD</td>
</tr>
<tr>
<td>Effective number of pixels</td>
<td>2048 (H) x 2048 (V)</td>
<td>1920 (H) x 1440 (V)</td>
<td>1344 (H) x 1024 (V)</td>
</tr>
<tr>
<td>Cell size (square format)</td>
<td>6.5 μm (H) x 6.5 μm (V)</td>
<td>3.63 μm (H) x 3.63 μm (V)</td>
<td>6.45 μm (H) x 6.45 μm (V)</td>
</tr>
<tr>
<td>Effective area</td>
<td>13.312 mm (H) x 13.312 mm (V)</td>
<td>6.97 mm (H) x 5.23 mm (V)</td>
<td>8.67 mm (H) x 6.60 mm (V)</td>
</tr>
<tr>
<td>Pixel clock rate</td>
<td>28.0 MHz/pixel</td>
<td>14.0 MHz/pixel</td>
<td>-</td>
</tr>
<tr>
<td>Readout speed</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Readout noise</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Full well capacity</td>
<td>30 000 electrons</td>
<td>18 000 electrons</td>
<td>36 000 electrons (at high dynamic range mode)</td>
</tr>
<tr>
<td>Dynamic range</td>
<td>1.3 electrons (median) / 1.9 electrons (rms)</td>
<td>3 electrons (gain 8x)</td>
<td>10 electrons (gain 8x)</td>
</tr>
<tr>
<td>Cooling method</td>
<td>Peltier cooling, forced air/water cooled</td>
<td>Peltier cooling, passive air cooled</td>
<td>Peltier cooling, forced air/water cooled, hermetic sealed</td>
</tr>
<tr>
<td>Cooling temperature</td>
<td>-30 °C (water cooled: +15 °C)</td>
<td>+5 °C (ambient temperature: +20 °C)</td>
<td>-40 °C (absolute value) (Water cooled)</td>
</tr>
<tr>
<td>Dark current</td>
<td>0.05 electrons/pixel/s</td>
<td>-</td>
<td>0.0005 electrons/pixel/s</td>
</tr>
<tr>
<td>A/D converter</td>
<td>16 bit</td>
<td>12 bit</td>
<td>12 bit or 16 bit</td>
</tr>
<tr>
<td>A/D converter speed</td>
<td>16 bit</td>
<td>12 bit</td>
<td>12 bit or 16 bit</td>
</tr>
<tr>
<td>Interface / Output signal (digital output)</td>
<td>Camera Link Full Configur..</td>
<td>Camera Link Base Configuration</td>
<td>IEEE1394b-2002</td>
</tr>
<tr>
<td>Exposure time</td>
<td>1 ms to 10 s</td>
<td>20 μs to 10 s (at internal trigger / external trigger)</td>
<td>10 μs to 4200 s</td>
</tr>
<tr>
<td>Sub-array</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External trigger</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Contrast enhancement</td>
<td>High speed readout</td>
<td>-</td>
<td>Analog gain (8 times max.) and offset function</td>
</tr>
<tr>
<td>Lens mount</td>
<td>C-mount</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Line voltage</td>
<td>AC 100 V to 240 V, 50 Hz / 60 Hz</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 70 VA</td>
<td>Approx. 45 VA</td>
<td>Approx. 60 VA</td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>-10 °C to +50 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>0 °C to +40 °C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ambient operating / storage humidity</td>
<td>70 % max. (with no condensation)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Calculated from the ratio of the full well capacity and average readout noise.
2. The hermetic sealed head maintains a high degree of vacuum (10⁻⁸ Torr) without re-evacuation.

*“ORCA-3CCD Digital Color Camera with front cable mount” for the C7780-10
“ORCA-3CCD Digital Color Camera with rear cable mount” for the C7780-20

* Structure of the hermetic vacuum-sealed head

* The hermetic vacuum-sealed air-cooled head is available. Please consult your local sales representative.
Dual wavelength imaging

<table>
<thead>
<tr>
<th>Dual wavelength imaging</th>
<th>High speed, high sensitivity and low cost</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORCA-D2</td>
<td>ORCA-03G</td>
<td>ORCA-05G</td>
</tr>
<tr>
<td>C11254-10B</td>
<td>C8484-03G02</td>
<td>C8484-05G02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C7780-10, C7780-20 *</td>
</tr>
<tr>
<td>1280 (H) x 960 (V) x 2CCD chip</td>
<td>1344 (H) x 1024 (V)</td>
<td>ER-150 progressive scan interline CCD</td>
</tr>
<tr>
<td>6.45 μm (H) x 6.45 μm (V)</td>
<td>6.45 μm (H) x 6.45 μm (V)</td>
<td></td>
</tr>
<tr>
<td>8.26 mm (H) x 6.19 mm (V)</td>
<td>8.67 mm (H) x 6.60 mm (V)</td>
<td></td>
</tr>
<tr>
<td>20.0 MHz/pixel</td>
<td>14.7 MHz/pixel</td>
<td>16.0 MHz/pixel</td>
</tr>
<tr>
<td>11.2 frames/s</td>
<td>8.9 frames/s</td>
<td>9.1 frames/s</td>
</tr>
<tr>
<td>20.2 frames/s</td>
<td>16.3 frames/s</td>
<td>18.1 frames/s</td>
</tr>
<tr>
<td>33.6 frames/s</td>
<td>27.8 frames/s</td>
<td>31.8 frames/s</td>
</tr>
<tr>
<td>50.5 frames/s</td>
<td>43.0 frames/s</td>
<td>51.5 frames/s</td>
</tr>
<tr>
<td>8 electrons rms</td>
<td>6 to 8 electrons rms</td>
<td>10 electrons rms</td>
</tr>
<tr>
<td>18 000 electrons</td>
<td>15 000 electrons</td>
<td>18 000 electrons</td>
</tr>
<tr>
<td>36 000 electrons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250:1</td>
<td>2142:1</td>
<td>1500:1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1384:1</td>
</tr>
<tr>
<td>Peltier cooling, forced air cooled, hermetic sealed</td>
<td>Peltier cooling, forced air cooled, hermetic sealed</td>
<td>passive air cooled</td>
</tr>
<tr>
<td>–10 °C (ambient temperature: +20 °C)</td>
<td>–10 °C (absolute value)</td>
<td>–</td>
</tr>
<tr>
<td>10 electrons rms</td>
<td>0.01 electrons/pixel/s</td>
<td>0.5 electrons/pixel/s</td>
</tr>
<tr>
<td>0 μs to 60 s</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10 μs to 1 s</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>10 μs to 1 s</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>128 μs to 10 s</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2/3 inch bayonet mount (flange back 48 mm)</td>
<td>C-mount</td>
<td>2/3 inch bayonet mount (flange back 48 mm)</td>
</tr>
<tr>
<td>AC 100 V to 240 V, 50 Hz / 60 Hz</td>
<td>DC +12 V</td>
<td>DC +8 V to DC +30 V</td>
</tr>
<tr>
<td>Approx. 70 VA</td>
<td>Approx. 24 VA</td>
<td>Approx. 8 VA</td>
</tr>
<tr>
<td>–10 °C to +50 °C</td>
<td>–10 °C to +50 °C</td>
<td>–10 °C to +50 °C</td>
</tr>
<tr>
<td>+10 °C to +35 °C</td>
<td>0 °C to +40 °C</td>
<td>0 °C to +40 °C</td>
</tr>
<tr>
<td>70 % max. (with no condensation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spectral response characteristics

sCMOS and CCD cameras

![Spectral response characteristics graph](image)

- ORCA-D2
- ORCA-R2
- ORCA-03G
- ORCA-05G
- ORCA-3CCD
- ORCA-Flash4.0 V2
- ORCA-Flash2.8

* These are typical, not guaranteed.
Back-thinned 512 × 512 frame transfer CCD with QE over 90 % peak

- 16 μm pixels with large full well capacity
- Optimized EM-CCD readout and stabilized dual mode cooling
- 70 frames/s readout (up to 1076 frames/s by sub-array readout)

Large pixels for high collection efficiency

EmX2

- Short exposure and fast frame rate
- Large dynamic range in both NORMAL-CCD and EM-CCD readout modes
- Highly stabilized gain and minimal dark noise

Back-thinned 1024 × 1024 frame transfer CCD with QE over 90 % peak

- 13 μm pixels and 11 MHz readout
- Optimized EM-CCD readout and stabilized dual mode cooling

Large field of view

Em1K

- Short exposure and high resolution
- Well matched to high NA objectives and fast readout
- Highly stabilized gain and minimal dark noise

Spectral response characteristics

EM-CCD cameras

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Quantum efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>100</td>
</tr>
<tr>
<td>600</td>
<td>90</td>
</tr>
<tr>
<td>800</td>
<td>80</td>
</tr>
<tr>
<td>1000</td>
<td>60</td>
</tr>
</tbody>
</table>

* These are typical, not guaranteed.

Sample image

Sample of luminescence imaging

Luminescence imaging of HeLa cells expressing Renilla Luciferase.

- Objective lens: 10x
- Cooling method: Water cooling (-80 °C)
- EM gain: 200x
- Exposure time: 5 min

This image is displayed by overlapping luminescence image (pseudo color) and actual image.
<table>
<thead>
<tr>
<th>Specifications</th>
<th>High-speed readout</th>
<th>High resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model name</td>
<td>ImagEM X2</td>
<td>ImagEM-1K</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel clock rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM (electron multiplying) gain protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External trigger mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output signal / External control</td>
<td>IEEE1394b</td>
<td>Camera Link</td>
</tr>
<tr>
<td>A/D converter</td>
<td>16 bit</td>
<td></td>
</tr>
<tr>
<td>Power requirements</td>
<td>AC 100 V to 240 V, 50 Hz / 60 Hz</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>Approx. 140 VA</td>
<td></td>
</tr>
<tr>
<td>Ambient storage temperature</td>
<td>-10 °C to +50 °C</td>
<td></td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>0 °C to +40 °C</td>
<td></td>
</tr>
<tr>
<td>Performance guaranteed temperaure</td>
<td>0 °C to +30 °C</td>
<td></td>
</tr>
</tbody>
</table>

Type number

- ImagEM X2: C9100-23B
- ImagEM-1K: C9100-14

Window

- Anti-reflection (AR) coatings on both sides, single window

AR mask

- Yes
- No

Imaging device

- Electron Multiplying Back-Threshold Transfer CCD

Effective number of pixels

- (Room temperature: Stable at +20 °C)

- 512 (H) × 512 (V) (Water temperature: lower than +10 °C)

- 1024 (H) × 1024 (V) (-55 °C)

Cell size

- 16 µm (H) × 16 µm (V) (Water temperature: lower than +10 °C)

- 13 µm (H) × 13 µm (V) (-55 °C)

Effective area

- 8.19 mm (H) × 8.19 mm (V) (Water temperature: lower than +10 °C)

- 13.3 mm (H) × 13.3 mm (V) (-55 °C)

Clock induced charge (typ.)

- 0.0005 electron/pixel/s (-45 °C)

- 0.001 electron/pixel/s (-45 °C)

Temperature stability (typ.)

- ±0.01 °C (Water temperature: higher than +10 °C)

- ±0.01 °C (Water temperature: +20 °C)

- ±0.05 °C (Water temperature: higher than +10 °C)

- ±0.05 °C (Water temperature: +20 °C)

Dark current (typ.)

- 0.0005 electron/pixel/s (-45 °C)

- 0.001 electron/pixel/s (-45 °C)

- 0.001 electron/pixel/s (-70 °C)

Clock induced charge (typ.)

- 0.0015 electron/pixel/frame

Gain settings

- EM gain 1200

- EM gain 1000

- EM gain 400

Max. output signal (typ.)

- 0.0005 electron/pixel/s (-45 °C)

- 0.001 electron/pixel/s (-45 °C)

Max. output signal (typ.)

- 0.0015 electron/pixel/frame

Image processing functions (real-time)

- Background subtraction

- Shading correction

- Recursive filter

- Frame averaging

- Spot noise reducer

EM gain protection

- EM gain protection mode

- EM protection mode

EM gain readjustment

- Available

Lens mount

- C-mount

Power requirements

- AC 100 V to 240 V, 50 Hz / 60 Hz

Power consumption

- Approx. 140 VA

Ambient operating/storage humidity

- 70 % max. (with no condensation)

The cooling head maintains a high degree of vacuum, 10⁻⁸ Torr, without re-evaporation.

Even with electron multiplying gain maximum, dark signal is kept at a low level during low light imaging.

Linearity is not assured when full well capacity is over 370 000 electrons, because of CCD performance.

The cooling temperature may not reach to this temperature; it depends on the operation condition.

Water volume 0.5 liter/min (C9100-23B), 1.2 liter/min (C9100-14).

Typical thermal charge value (not guaranteed).

Image smearing may appear when the exposure time is short.

8 x 8 and 16 x 16 binning are available on special order. Please consult with our sales office.

C-MOS 3.3 V with reversible polarity.

Recursive filter, frame averaging, and spot noise reducer cannot be used simultaneously.
ORCA is registered trademark of Hamamatsu Photonics K.K. (France, Germany, Japan, U.K., U.S.A.)
ImagEM is registered trademark of Hamamatsu Photonics K.K. (EU, Japan, U.K., U.S.A.)
Windows is registered trademark of Microsoft Corporation in the U.S.A.

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult your local sales representative.

Specifications and external appearance are subject to change without notice.

© 2013 Hamamatsu Photonics K.K.

HAMAMATSU PHOTONICS K.K., Systems Division
812 Joko-cho, Higashi-ku, Hamamatsu City, 431-3196, Japan, Telephone: (81)53-431-0124, Fax: (81)53-435-1574, E-mail: export@sys.hpk.co.jp

U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O. Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com

Germany: Hamamatsu Photonics Deutschland GmbH: Azthbergstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-365-8 E-mail: info@hamamatsu.de

France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: info@hamamatsu.fr

United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Twin Road Waltham Garden City Harfordshire AL7 1BN, United Kingdom, Telephone: 44-(0)1707-29488, Fax: 44-(0)1707-32577 E-mail: info@hamamatsu.co.uk

North Europe: Hamamatsu Photonics Norden AB: Torsviksgatan 32 16440 Kista, Sweden, Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Italy: Hamamatsu Photonics Italia: S.P.L.: Strada della Moia, 1/E, 20020 Arase, (Milano), Italy, Telephone: (39)92-935 81 733, Fax: (39)92-935 81 741 E-mail: info@hamamatsu.it

China: Hamamatsu Photonics (China) Co., Ltd: 1201 Tower B, Jiarring Center, 27 Donganqian Road North, Chaoyang District, Beijing 100020, China, Telephone: (86)10-6586-6008, Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn