HAMAMATSU

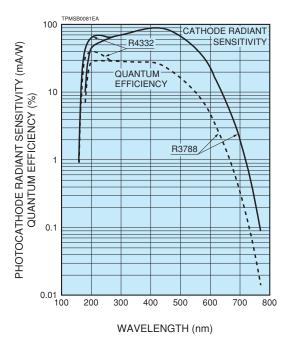
PHOTON IS OUR BUSINESS

PHOTOMULTIPLIER TUBES R3788, R4332

FEATURES

Wide spectral response	
R3788	185 nm to 750 nm
R4332	160 nm to 750 nm
High cathode sensitivity	
Luminous	120 µA/Im Typ.
Radiant at 420 nm	
Quantum efficiency at 210 nm	
High anode sensitivity (at 1000 V)	
Luminous	1200 A/Im Typ.
Radiant at 420 nm	.9.0 × 10 ⁵ A/W Typ.

▲Left: R3788, Right: R4332


Fluorescence spectrophotometers
Emission spectrophotometers
Atomic absorption spectrophotometers

SPECIFICATIONS

GENERAL

Pa	arameter	Description / Value	Unit
Spectral	R3788	185 to 750	nm
response	R4332	160 to 750	nm
Wavelength of	maximum response	420	nm
Photocathode	Material	Bialkali	—
THOLOCALHOUE	Minimum effective area	8 × 24	mm
Window	R3788	UV glass	—
material	R4332	Silica glass	—
	Secondary emitting surface	Bialkali	—
Dynode	Structure	Circular-cage	—
	Number of stages	9	—
Direct Interelectrode	Anode to last dynode	4	pF
capacitances	Anode to all other electrodes	6	pF
Base		11-pin base JEDEC No. B11-88	—
Weight		Approx. 45	g
Operating amb	ient temperature	-30 to +50	О°
Storage tempe	rature	-30 to +50	°C
Suitable socke	t	E678–11A (Sold separately)	
Suitable cocke	taccombly	E717–63 (Sold separately)	
Suitable socke	L ASSEITIDIY	E717–74 (Sold separately)	

Figure 1: Typical spectral response

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2021 Hamamatsu Photonics K.K.

MAXIMUM RATINGS (Absolute maximum values)

	Parameter	Value	Unit
Supply voltage	Between anode and cathode	1250	V
Supply voltage	Between anode and last dynode	250	V
Average anode current ^A		0.1	mA

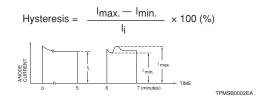
CHARACTERISTICS (at 25 °C)

		R3788			Unit				
	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit		
	Quantum efficier (at peak waveler	•		30 (at 250 nm)	—	_	40 (at 210 nm)	—	%
	Luminous ^B		100	120		100	120		µA/lm
Cathode sensitivity		at 194 nm		31			60	_	mA/W
Callibue sensitivity	Radiant	at 210 nm		50			68	_	mA/W
		at 420 nm	—	90	—	—	90	—	mA/W
	Red / White ratio) ^C	—	0.01	—	—	0.01	—	—
	Blue sensitivity i	ndex ^D		10	—	—	10	—	—
	Luminous ^E	500	1200	—	500	1200	—	A/Im	
Anode sensitivity		at 194 nm	—	3.1 × 10 ⁵	—	—	6.0×10^{5}	—	A/W
Anoue sensitivity	Radiant	at 210 nm	—	5.0×10^{5}		—	6.8 × 10 ⁵	—	A/W
		at 420 nm		9.0×10^{5}	—	—	9.0×10^{5}	—	A/W
Gain ^E	—	1.0×10^{7}	—	—	1.0×10^{7}	—	—		
Anode dark current ^F (After 30 min storage in darkness)				5	50	—	5	50	nA
ENI (Equivalent Noise Input) G				1.4 × 10 ⁻¹⁶		—	1.4×10^{-16}	—	W
	Anode pulse rise	e time ^H		2.2	—	—	2.2	—	ns
Time response ^E	Electron transit t	—	22	—	—	22	—	ns	
	Transit time spre		1.2	—	—	1.2		ns	
Anode current stability K	Light hysteresis		0.1		_	0.1	_	%	
Anode current stability "	Voltage hysteres	_	1.0	_		1.0	_	%	

NOTES

- A: Averaged over any interval of 30 s maximum.
- B: The light source is a tungsten filament lamp operated at a distribution temperature of 2856 K. Supply voltage is 100 V between the cathode and all other electrodes connected together as anode.
- C: Red / White ratio is the quotient of the cathode current measured using a red filter interposed between the light source and the tube by the cathode current measured with the filter removed under the same conditions as Note B.
- D: The value is cathode output current when a blue filter is interposed between the light source and the tube under the same condition as Note B.
- E: Measured with the same light source as Note B and with the voltage distribution ratio shown in Table 1 below.

Table 1: Voltage distribution ratio


Electrodes	К	Dy	/1	Dy	2	Dy3	D	y4	Dy	/5	Dy6	D	y7	Dy	/8	Dy	/9		Ρ
Distribution ratio		I	1	1	1	1	1		1	1	1	1		1		1		1	
Supply volta	Ι,	K	: Ca	tho	de	,	Dy	/: Dy	/nc	de), I	Ρ:	Ar	100	de				

- F: Measured with the same supply voltage and voltage distribution ratio as Note E after removal of light.
- G: ENI is an indication of the photon-limited signal-to-noise ratio. It refers to the amount of light in watts to produce a signal-to-noise ratio of unity in the output of a photomultiplier tube.

$$\mathsf{ENI} = \frac{\sqrt{2q} \cdot \mathsf{Idb} \cdot \mathbf{G} \cdot \Delta \mathbf{f}}{\mathsf{S}}$$

- where $q = Electronic charge (1.60 \times 10^{-19} coulomb).$
 - Idb = Anode dark current(after 30 min storage) in amperes. G = Gain.
 - Δf = Bandwidth of the system in hertz. 1 hertz is used.
 - S = Anode radiant sensitivity in A/W at the
 - wavelength of peak response.

- H: The rise time is the time for the output pulse to rise from 10 % to 90 % of the peak amplitude when the entire photocathode is illuminated by a delta function light pulse.
- I: The electron transit time is the interval between the arrival of delta function light pulse at the entrance window of the tube and the time when the anode output reaches the peak amplitude. In measurement, the whole photocathode is illuminated.
- J: Also called transit time jitter. This is the fluctuation in electron transit time between individual pulses in the signal photoelectron mode, and may be defined as the FWHM of the frequency distribution of electron transit times.
- K: Hysteresis is temporary instability in anode current after light and voltage are applied.

(1) Light hysteresis

The tube is operated at 750 V with an anode current of 1 μ A for 5 minutes. The light is then removed from the tube for a minute. The tube is then re-illuminated by the previous light level for a minute to measure the variation.

(2) Voltage hysteresis

The tube is operated at 300 V with an anode current of 0.1 μ A for 5 minutes. The light is then removed from the tube and the supply voltage is quickly increased to 800 V. After a minute, the supply voltage is then reduced to the previous value and the tube is re-illuminated for a minute to measure the variation.

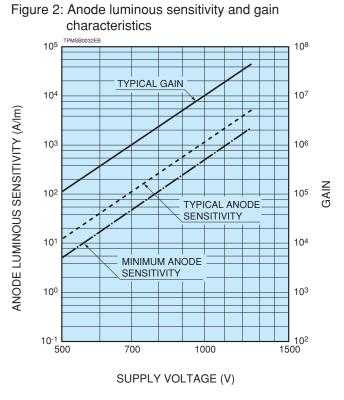
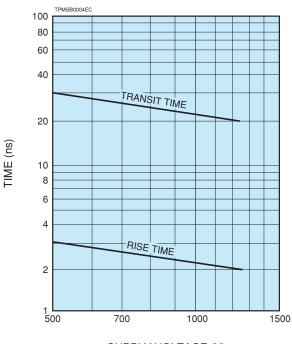
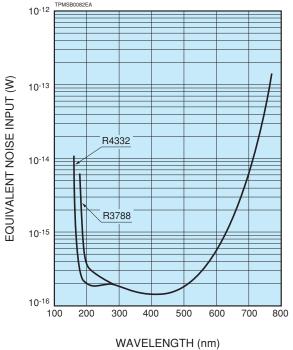
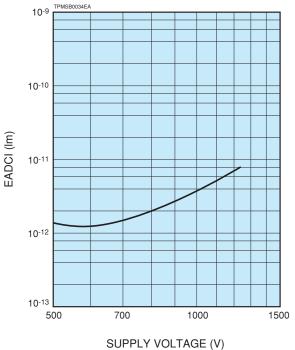
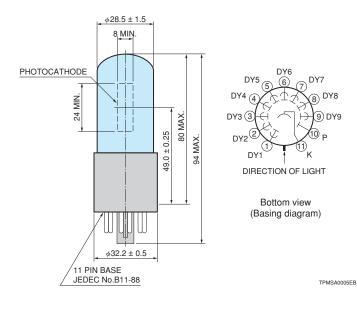



Figure 3: Typical time response

SUPPLY VOLTAGE (V)

Figure 4: Typical ENI with wavelength


Figure 5: Typical EADCI (Equivalent Anode Dark Current Input) vs. supply voltage

PHOTOMULTIPLIER TUBES R3788, R4332

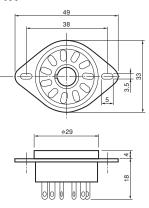
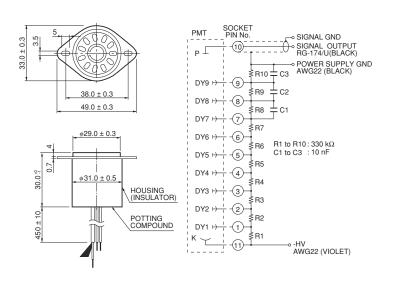
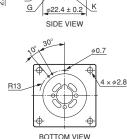
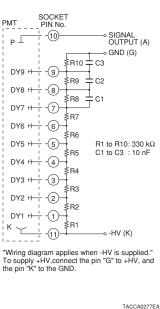

Figure 6: Dimensional outline and basing diagram (Unit: mm)

Figure 7: Socket (Unit: mm)


Sold separately


TACCA0064EA


Figure 8: D type socket assembly (Unit: mm) E717-63

HOUSING (INSULATOR) 0 32.0 ± 0.5 26.0 ± 0.2 Ó \triangle \sim oÒ 0 0 26.0 ± 0.2 32.0 ± 0.5 TOP VIEW

E717-74

TACCA0002EH

Sold separately

* Hamamatsu also provides C13890 series compact high voltage power supplies and C6270 series DP type socket assemblies which incorporate a DC to DC converter type high voltage power supply.

Warning–Personal Safety Hazards

Electrical Shock-Operating voltages applied to this device present a shock hazard.

HAMAMATSU PHOTONICS K.K. www.hamamatsu.com

Electron Tube Division

314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone: (81)539/62-5248, Fax: (81)539/62-2205

 S14-5, ShimoKanzo, Iwata City, Shizuoka Prer., 438-0193, Japan, Telephone: (81)539/02-2248, FaX: (81)539/02-2240, FaX: (81)552-375, FaX: (81)552-375, FaX: (81)552-375, FaX: (81)552-375, FaX: (81)552-375, FaX: (81)552-377, Fax: (81)539/02-93, FaX: (81)52-377, Fax: (81)539/02-93, FAX: (81)59/02-93, FAX: (81)59/02-93, FAX: (81)59 atsu.co.uk

TPMS1021E03

JUN. 2021 IP