Galápagos

YFP-halide assays for CFTR drug discovery using the FDSS/µcell

Joseline Ratnam, PhD Team Leader Biochemical Pharmacology

Hamamatsu 11th FDSS User Meeting 11 June 2015

Dutline

- Introduction to Cystic Fibrosis
 - Disease and cause
 - Approved therapies and remaining challenges
 - Targeting underlying mutations
- Cell-based assays used for CFTR drug discovery
 - YFP-Halide Assay
 - Principle and advantages
 - Assay development on FDSS/µCell
 - HTS to find CFTR modulators
- Conclusion

Cystic Fibrosis: Facts & Biology

- Cystic Fibrosis (CF) is the most frequent life-threatening autosomal recessive disease in the Caucasian population
 - > 1 in 2500 newborns diagnosed with CF
 - > 1 in 25 Caucasians carry at least 1 CF allele
- Characterized by thick mucus in lumen of several organs
 - Airways, pancreas, gastro-intestinal tract, reproductive tract
 - > Frequent lung infections, sinus infections, poor growth, and infertility
 - Life expectancy: mid-30s
- Caused by mutations in the CFTR gene (~1900)

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

- Chloride channel from ABC transporter family, expressed on the apical membrane of epithelial cells
- In normal cells, water follows chloride ions onto surface of lung, hydrates lung surface and cilia beat normally
- Defective CFTR channels don't transport chloride ions out of cells
- Reduced hydration of lung surfaces impairs normal functioning of cilia

Challenges in CF drug discovery

- Gene therapy : Lack of efficient gene transfer to cellular targets required to correct *in vivo* CFTR function -> 25 failed clinical trials to date
- Lack of good animal models
- Paucity of structural information on full-length wild-type and mutant CFTR
- Complexity of defects caused by various CFTR mutations

Classes of CFTR mutations

Combination approaches to fix the most severe CFTR mutations

CFTR phenotypic assays

- CFTR cell surface expression:
 - Epitope-tagged CFTR detection on cell surface via ELISA
 - ➢ Beta galactosidase enzyme fragment complementation for detection of membrane localized enzyme fragment fusion CFTR construct (DiscoveRx[™])
- CFTR channel function:
 - Membrane potential or halide-sensitive fluorescent dyes to measure CFTR-dependent chloride influx
 - YFP-Halide assays to measure CFTR-dependent halide influx

9

> YFP-Halide Assay

- Fluorescence of Yellow Fluorescent Protein mutant (YFP-H148Q/I521L) quenched by halides (selectivity: iodide > chloride)
- Cell lines expressing mutant CFTR and YFP are generated, CFTR activated via cAMP 1 (Forskolin) in the presence of iodide
- Compound mediated restoration of anion channel function estimated by fluorescence quenching of iodide

Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists Luis V. J. Galietta, Sujatha Jayaraman, A. S. Verkman American Journal of Physiology - Cell Physiology Nov 2001, 281 (5)

Advantages

- Sensitive quantitative assay to measure restoration of deficient cellular chloride transport – HTS compatible
- Excellent optical properties and retention in cells
- Fluorescence indicator loading and washing not necessary
- Applicable to physiologically relevant bronchial epithelial cells
 show minimal basal halide permeability before stimulation
- Anion co-transporters like NKCC and exchangers like AE1 transport I- poorly, whereas CFTR transports I- efficiently -> better selectivity
- Can be run in different flavours : to detect potentiators, correctors and compound synergies

HTS to identify CFTR potentiators Assay optimization

- Evaluation of HEK-293 cells vs CF bronchial epithelial (CFBE410-) cells
- Transfection/transduction conditions
- Using the µcell/FDSS for increased throughput comparison with EnVision[®]
- Analysis method

Baseline fluorescence and Z' in HEK-293 cells transfected with YFP-H148/I152L

Z' is generally poor for HEK-293 transfected cells

CFBE410- cells Cell number and YFP transduction conditions

Baseline fluorescence and Z' in CFBE cells transduced with YFP-H148/I152L

- Adenoviral transduction in CFBE cells gives more uniform YFP signals
- More physiologically relevant cell line for CF

Somparison of instruments

EnVision[®] (Perkin Elmer)

Dual-detector multilabel Plate reader

Label specific optical mirror modules and filter optics

Temperature control

Well per well reading

High precision dispenser unit:

Well per well dispensing -96w plates

Dispense volume: 2 - 475 µL

Dispense speed: 100 - 500 µL/sec

FDSS/µCELL (Hamamatsu)

Kinetic plate reader for fluorescence and luminescence

Filter optics

No temperature control

High speed, high - sensitivity CCD camera for detection of entire plate

384 well dispenser head:

Simultaneous 384w dispensing

Dispense volume: 1 - 30 µL

Dispense speed: 2 - 50 µL/sec

Multiple compound/ligand dispensing

Active wash station allowing reuse of tips, with wipe function

Comparison of methods

EnVision®	Assay conditions	FDSS/µCELL		
Day 1: Cell seeding				
96 well	Plate format	384 well		
6,000 cells/well in 100 μL	Cell density	2,000 cells/well in 50µL		
Day 2: Transduction of cells				
MOI 20	YFP virus	MOI 30		
MOI 30	CFTRdelF508 virus	MOI 30		
Day 3: Low temperature correction				
20 hours incubation at 27 °C, 5% CO ₂				
Day 4: Washing of cells, compound addition & activation of CFTR				
Manual washing (2 x 40 µL)	Washing of cells with DPBS	Plate washer (5x 90 μL, 20 μL remaining after last wash)		
Addition of compounds and forskolin using multichannel (40 µL added on dry cells)	Compound addition + activation of CFTR with 10 µM forskolin	Compound and forskolin addition using FDSS/µCELL (10 µL added on cell plates containing 20 µL PBS)		
150 μL/sec	Injection of I-	30 μL/sec		
16 minutes (34 readings per well every 0.2 sec) with excitation at 485 nm and emission at 530 nm	Reading	3 minutes including washing of tips (384 wells read simultaneously) with excitation at 480 nm and emission at 540 nm		

Analysis method

	Analysis based on slope	Analysis based on fluorescence at 36 sec	Analysis based on fluorescence at 105 sec
S/B	1.7	2.2	1.4
Ζ′	0.67	0.76	0.76

Comparison of compound activities

Good correlation between pEC₅₀ values obtained on both platforms

Comparison of QC parameters S/B (FDSS/µCELL) -S/B (EnVision) Z' (EnVision) ----Z' (FDSS/µCELL) 12.00 1.20 8.00 0.80 4.00 0.40 0.00 0.00 Expt. No. Expt. No.

- Z' values comparable between platforms
- S/B considerably reduced on the FDSS/µCELL but more stable over runs

HTS to identify potentiators of F508del-CFTR

- Library
 - A diverse selection of 76,000 compounds was screened (40 plates/day, 6 runs)
- HTS QC criteria
 - Plates accepted if Z'>=0.35
 - > Pharmacology QC by reference compound IC_{50}
 - +/- 3 fold the historical average

- High hit rate observed
- Consistent data after normalization over the different runs
- Reproducible pharmacology for reference compounds

YHA potentiator HTS QC results

- Good assay S:B and plate Z' for most plates screened
- Only 1 plate rejected for the whole screen

Conclusions

- Quantitative functional assay to identify compounds that improve chloride channel function in CFBE cells
- Robust protocol with an average S/B of 1.8 and a Z'>0.5.
- Optimized protocol using the plate washer and the FDSS/µCELL led to a 20-fold increase in the assay throughput – suitable for HTS
- Good correlation between EC₅₀ data obtained on the EnVision[®] and the FDSS/µCELL

Acknowledgments

CF team at Galapagos Mechelen

Thierry Christophe

Luc Nelles

Katja Conrath

Jan Van Der Schueren

Mia Jans

Anne-Sophie Wesse

Kim Carrein

Katleen Verdonck

Ann Vandevelde