Triggering Calcium Responses in Various Human iPSC-derived Neural Cell Types

Giorgia Salvagiotto, PhD June 2016

Transformative Potential of iPSC Technology:

Enabling for Drug Discovery, Toxicology, and Regenerative Medicine

Several Different Human Neural Cell Types Available...

iCell Neurons

iCell DopaNeurons

iCell Astrocytes

iCell Motor **Neurons**

iCell GlutaNeurons

iCell Induced Neurons

500 400 300

200

... with Numerous Different Applications

Area of Interest – Calcium Signaling Assays in Neurons

- Calcium plays an important role in cell signaling
 - Direct signal transduction or as 2nd messenger
- Calcium is involved in:
 - Membrane excitability and depolarization
 - Synaptic plasticity and neuronal transmission
- There is interest in human iPSC-neurons because they posses relevant markers/channels that are present at endogenous expression levels:
 - Voltage-gated calcium channels (VGCCs)
 - Internal Ca2+ stores (IP3 and ryanodine receptors)
 - Ionotropic glutamate receptors (NMDA and AMPA)
 - Metabotropic Glu receptors (mGluRs)

1st Tier Approach: Ligand-induced Ca²⁺ Flux

96-well plates; HTS-compatible

Profiling of multiple receptor agonists

Measurable across multiple neuronal subtypes

Ca²⁺ signal can be inhibited / competitively antagonized

2nd Tier Approach: Measuring Network Connectivity iPSC-derived Dopaminergic Neurons

Network Bursts

- ✓ High neuron purity (>95% MAP2+)
- ✓ High TH expression (>80% DIV 14)
- Appropriate gene expression (cells are more *excitatory* than *inhibitory*; VGLUT2 > VGAT)
- Responsive to various DA-specific pharmacology (cAMP HTRF assay)
- Develops organized network-level bursting patterns on MEA (DIV >14)

2nd Tier Approach: Measuring Network Connectivity Assay Development Highlights

Consistent phenotype / assay signal from well-to-well

Timing and media considerations

DIV >14

Pharmacological modulation of signal

20 µM D-AP5

$5 \ \mu M \ DNQX$

Example Pharmacology with iCell DopaNeurons

1.

2.

3.

3rd Tier Approach: 'Next Gen' Assays with FDSS/µCell

Ca²⁺ response evoked by EFS

Electric field stimulation (EFS) parameters

Voltage	20 V
Pulse Width	2.0 ms
Number of pulse	50 times at each stimulation
Frequency	10, 20, 30, 40 Hz

Natsumi Kato, Sunao Hisada, and Fumio Iwase, Systems Division, Hamamatsu Photonics K.K., Hamamatsu 431-3196, Japan Ko Zushida and Hideo Saotome, IPS PORTAL Inc., Kyoto 602-0841, Japan

Membrane Potential

(Data from cells on same plate)

3D Cell Culture / Co-Culture

Other Functionally Relevant Human Cell Types from iPSC

iCell Skeletal Myoblasts

EarlyTox calcium dye

Compound Treatment

Electrical Field Stimulation (EFS)

Final Thoughts

Lego building blocks

Platform provider; Data analysis

CDI provides highly pure cryopreserved cells

iCell Operating System

Study neurological diseases