Photo IC for optical link

Transmitter photo IC L11354-02

Receiver photo IC S11355-04

For 150 Mbps optical link

These photo ICs is capable of data communication at a transmission speed of 150 Mbps through a plastic optical fiber (POF). The transmitter is composed of a 650 nm RC (resonant cavity) type LED, which is suitable for POF communications, and a driver circuit that supports an LVDS interface. The transmitter has a built-in temperature compensation function that adjusts for the reduction in the light emission power caused by the high temperature of the RC type LED. This function makes light emission with stable power possible over a wide temperature range. The receiver is composed of a PIN photodiode and signal processing circuit. The adoption of a full differential structure using a dummy photodiode eliminates the effects of external noise, achieving high sensitivity. In addition, the photo IC has a sleep function that suppresses power consumption by switching to standby mode when there is no input.
These products features high quality and high reliability, allowing it to be installed even in automobiles for in-vehicle networking. It is already used as an fiber optical transceiver (FOT) for a MOST network, which is a type of in-vehicle multimedia network.

Features

Communication speed up to 150 Mbps
$-$
3.3 V power supply operation

Wide operating temperature: -40 to $+95{ }^{\circ} \mathrm{C}$
Suitable for reflow soldering
\Rightarrow Sleep mode function

E= Applications

Data transmission in harsh, noisy environments, such as in FA and OA
High-speed, short-distance data transmission
Only for vehicle networks (MOST)
MOST compliant products
Specifications of these products are subject to
change without prior notice to keep up with
changes in the MOST standard.

E- Absolute maximum ratings

Parameter	Symbol	Condition	Value	Unit
Supply voltage	Vcc_TX	$\mathrm{Ta}=-40$ to $+95^{\circ} \mathrm{C}$	-0.5 to +4.5	V
	Vcc_RX		-0.5 to +4.6	
Input voltage	Vi	$\mathrm{Ta}=-40$ to $+95^{\circ} \mathrm{C}$	-0.5 to Vcc+0.5	V
Power dissipation	P	Ta $=-40$ to $+95^{\circ} \mathrm{C}$	350	mW
			320	
Operating temperature	Topr		-40 to +95	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +110	${ }^{\circ} \mathrm{C}$
Soldering temperature*1	Tsol		260 (3 times)	${ }^{\circ} \mathrm{C}$

*1: Reflow soldering, JEDEC J-STD-020 MSL 2a, see P. 12
Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

-= Recommended operating conditions

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Supply voltage	Vcc		3.135	3.3	3.465	V
Data rate	fD	DCA coding	-	-	150	Mbps

L11354-02

E. Electrical and optical characterisitics ${ }^{* 2}$ ($\mathrm{Ta}=-40$ to $+95^{\circ} \mathrm{C}, \mathrm{Vcc}=3.135$ to 3.465 , unless otherwise noted ${ }^{* 3}$)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Current consumption	Icc	*4	-	-	40	mA
Peak emission wavelength	$\lambda \mathrm{C}_{2}$		635	650	675	nm
Spectral width (RMS)	$\sigma \lambda 2$		-	-	17	nm
Fiber coupled optical output 1	Po1		-7	-	-1.5	dBm
Fiber coupled optical output 2	PofF2		-	-	-50	dBm
Extinction ratio	re		10	-	-	dB
Rise time	tr	20 to 80%,*4 *5	-	-	0.5	UI
Fall time	tf	80 to 20%, ${ }^{* 4 * 5}$	-	-	0.5	UI
Transfer jitter (RMS)	Jtr2	*4 *5	-	-	112	ps
Overshoot	rpos	*5	See "■ Overshoot" table.			-
Undershoot	rnos	*5	See "■ Undershoot" table.			-
Input voltage level "/RST"	VinRL	*6	-	-	0.8	V
	VinRH	*6	2	-	-	
Input current "/RST"	IinRL	/RST=Low	-	-	-0.1	$\mu \mathrm{A}$
	IinRH	/RST = High	-	-	50	
Input current "TXN" "TXP"	IinTXL	TXN, TXP=Low	-	-	-0.1	$\mu \mathrm{A}$
	IinTXH	TXN, TXP=High	-	-	0.1	
Frequency range During transmission	FoN1		12	-	73.743	MHz
Frequency range During non-transmission	Foff1		0	-	10	kHz
Valid MOST data (SP2) time	ton2	*7 *8	-	-	100	$\mu \mathrm{s}$
	toff2	*7 *9	-	-	2	$\mu \mathrm{s}$
Eye mask	A2 to F2		See "■ Eye mask" table.			-

*2: Electrical interface conforms to LVDS standards except common mode input voltage.
*3: Connect a bypass capacitor ($0.1 \mu \mathrm{~F}$) between Vcc and GND at a position within 3 mm from the leads. Also connect a $10 \mu \mathrm{~F}$ capacitor near the photo IC.
The center of the optical fiber is aligned with the center of the package lens. The distance between the fiber end and the lens top is 0.1 mm .
*4: Input signal rate 150 Mbps (DCA coding)
*5: Input signal

Parameter	Symbol	Min.	Typ.	Max.	Unit
Differential input voltage	Vid	200	-	1272	mV
Common mode input voltage	VCM	0.05	-	Vcctx -1.2	V
Total jitter	tTJtp1	-	-	0.15	UI
Transfer jitter (RMS)	Jtr1	-	-	50	ps

*6: /RST signal

Parameter		Symbol	Min.	Max.	Unit					
Valid supply voltage range							VVALID	1	3.465	V
Logic switching threshold		VT	2.97	-	V					
Logic delay time	$0 \rightarrow 1$	tD +	1	-	ms					

[^0]*7: See " $=$-Timing chart (P.5)".
*8: Delay time for light output to turn on
*9: Delay time for light output to turn off

- Overshoot

Parameter	Amplitude*10	Time (UI)	Overshoot
Ao	-0.200	-0.630	KPICB0153EA
Bo	-0.200	0.100	
Co	0.500	0.100	
Do	0.800	0.350	
Eo	0.800	1.370	
Fo	0.200	-0.630	
Go	0.200	-0.350	
Ho	0.500	-0.100	
Jo	1.400	-0.100	
Ko	1.400	1.370	

*10: On the basis of $b_{0}=0$ and $b_{1}=1$

- Undershoot

*11: On the basis of $\mathrm{b}_{0}=0$ and $\mathrm{b}_{1}=1$
*12: The positions of $\mathrm{Au}, \mathrm{Bu}, \mathrm{Cu}, \mathrm{Ku}, \mathrm{Lu}$ and Mu on the time axis depend on the MOST data pulse width (2 to 6). $\mathrm{x}=$ MOST data pulse width -2
For 2UI: $x=0$, For 6UI: $x=4$

Eye mask

Parameter	Amplitude	Time (UI)	Eye mask		
A2	$0.5 \times(\mathrm{b} 1+\mathrm{b} 0)$	0.150			
B2	$0.8 \times(\mathrm{b} 1-\mathrm{b} 0)+\mathrm{b} 0$	0.400		$\begin{array}{ll}\mathrm{B} 2 & \mathrm{C}_{2}\end{array}$	
C2	$0.8 \times(\mathrm{b} 1-\mathrm{b} 0)+\mathrm{b} 0$	0.600		Keep out area	
D2	$0.5 \times(\mathrm{b} 1+\mathrm{b} 0)$	0.850		Keep out area	KPICB0155EA
E2	$0.2 \times(\mathrm{b} 1-\mathrm{b} 0)+\mathrm{b} 0$	0.600		$\mathrm{F}_{2} \quad \mathrm{E}_{2}$	
F2	$0.2 \times(\mathrm{b} 1-\mathrm{b} 0)+\mathrm{b} 0$	0.400			

S11355-04

Electrical and optical characterisitics ${ }^{* 13}$ ($\mathrm{Ta}=-40$ to $+95{ }^{\circ} \mathrm{C}$, Vcc=3.135 to 3.465 , unless otherwise noted ${ }^{* 14}$)

Parameter	Symbol	Condition	S11355-04			P11379-04AT			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Peak sensitivity wavelength	λp		-	800	-	-	800	-	nm
Current consumption (operation mode)	Icco	*15	-	-	45	-	-	40	mA
Current consumption (sleeping mode)	Iccs	Dark state	-	-	30	-	-	30	$\mu \mathrm{A}$
STATUS ${ }^{\text {High level output voltage }}$	Vmh	Imh $=20 \mu \mathrm{~A}^{* 16}$	2.5	-	-	2.5	-	-	V
STATUS Low level output voltage	Vml	Iml $=0.88 \mathrm{~mA}(\mathrm{~S} 11355-04)^{* 16}$	-	-	0.5	-	-	0.5	V
Operation to sleeping mode transition receivable level	Poff3	*15 *17*18	-	-	-35	-	-	-35	dBm
Transfer jitter (RMS)	Jtr4		-	-	230	-	-	230	ps
Error rate	Pe	$* 15 * 18 * 19 * 20 * 21$	-	-	10^{-9}	-	-	10^{-9}	-
Valid MOST data (input signal) frequency	Fon3		12	-	73.743	12	-	73.743	MHz
Invalid MOST data frequency	FOFF3		0	-	10	0	-	10	kHz
Time from input signal start to operation mode	tON4	*22	-	-	10	-	-	10	ms
Time from input signal start to STATUS ON	tStata	*22	200	-	1000	200	-	1000	$\mu \mathrm{s}$
Time from STATUS ON to LVDS output stabilization	tLVDSV4	*22	-	-	100	-	-	100	$\mu \mathrm{s}$
Time from input signal stop to sleeping mode	toff4	*22	-	-	1	-	-	1	ms
LVDS output hold time	tLVDSH4	*22	1	-	-	1	-	-	$\mu \mathrm{s}$
Time from input signal stop to STATUS OFFEye mask	tSTATR	*22	-	-	2	-	-	2	$\mu \mathrm{s}$
	A4 to F4				"■Eye	mask"			-

*13: Electrical interface conforms to LVDS standards except differential output amplitude level
*14: Connect a bypass capacitor ($0.1 \mu \mathrm{~F}$) between Vcc and GND at a position within 3 mm from the leads. Also connect a $10 \mu \mathrm{~F}$ capacitor near the photo IC.
*15: Input signal

Parameter	Symbol	Min.	Typ.	Max.	Unit
Optical data that allows Valid MOST data (SP4) to be obtained	Popt3	-23.5	-	-2	
Rise time	trtp3	-	dBm		
Fall time	tftp3	-	-	2	ns
Total jitter	tTJtp3	-	-	2	ns
Extinction ratio	re	10	-	600	ps

*16: Changes to operation mode when input light enters the receiver section. When STATUS output is low, the photo IC is in operation mode. When STATUS output is high, the photo IC is in sleeping mode.
*17: Input light is specified as the average power at the fiber end. The optical fiber used is a POF (NA $=0.5$).
*18: The center of the optical fiber is aligned with the center of the package lens. The distance between the fiber end and the lens top is 0.1 mm .
*19: RL=100 k $\Omega, C L=3 \mathrm{pF}$ (including parasitic capacitance such as probe, connector and circuit board)
*20: A standard transmitter specified by HAMAMATSU is used to input light.
*21: Optical input signal rate=150 Mbps (DCA coding)
*22: See " $=$-Timing chart (P.5)".

Eye mask

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Amplitude (mV) \& Time (UI) \& \multicolumn{3}{|c|}{Eye mask}

\hline A4 \& 0 \& 0.275 \& \multirow[t]{8}{*}{G

H4} \& Keep out area \&

\hline B4 \& 148 \& 0.425 \& \& \&

\hline C4 \& 148 \& 0.575 \& \& $B_{4} \quad C_{4}$ \&

\hline D4 \& 0 \& 0.725 \& \& Keep out area D4 \&

\hline E4 \& -148 \& 0.575 \& \& Keep out a \&

\hline F4 \& -148 \& 0.425 \& \& $\mathrm{F}_{4} \quad \mathrm{E}_{4}$ \&

\hline G4 \& 636 \& - \& \& \& \multirow[b]{2}{*}{KPICB0156EA}

\hline H4 \& -636 \& - \& \& Keep out area \&

\hline
\end{tabular}

Timing chart

Block diagram

L11354-02

Connection example

| L11354-02 |
| :--- | :--- |

*Bold line: 50Ω impedance matching

Symbol	Part	Constant
R1	Resistor	100Ω
L1	Inductance	$0.1 \mu \mathrm{H}$
C1	Capacitor	$0.1 \mu \mathrm{~F}$
C2	Capacitor	$10 \mu \mathrm{~F}$
	Capacitor	$10 \mu \mathrm{~F}$

S11355-04

*Bold line: 50Ω impedance matching

Symbol	Part	Constant
R1	Resistor	100Ω
L1	Inductance	$0.1 \mu \mathrm{H}$
C2	Capacitor	$0.1 \mu \mathrm{~F}$
C3	Capacitor	$10 \mu \mathrm{~F}$
	Capacitor	$10 \mu \mathrm{~F}$

-= Eye diagram

Optical output waveform of L11354-02

=- Dimensional outlines (unit: mm)

[^1]
Recommended reflow soldering conditions

Time

- This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of $30^{\circ} \mathrm{C}$ or less and a humidity of 60% or less, and perform soldering within 4 weeks.
- The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. Before actual reflow soldering, check for any problems by tesitng out the reflow soldering methods in advance.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions

- Disclaimer
- Metal, ceramic, plastic products information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.
The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.
www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division
1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184
U.S.A.: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, N.J. 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: usa@hamamatsu.com

Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de
France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69537100 , Fax: (33)1 695371 10, E-mail: infos@hamamatsu.fr
United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, UK, Telephone: (44)1707-294888, Fax: (44)1707-325777, E-mail: info@hamamatsu.co.uk
North Europe: Hamamatsu Photonics Norden AB: Torshamnsgatan 3516440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: info@hamamatsu se
Italy: Hamamatsu Photonics Italia S.r.I.: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.it
China: Hamamatsu Photonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, P.R.China, Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866, E-mail: hpc@hamamatsu.com.cn Taiwan: Hamamatsu Photonics Taiwan Co., Ltd.: 8F-3, No. 158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)3-659-0080, Fax: (886)3-659-0081, E-mail: info@hamamatsu.com.tw

[^0]: Note: See "=-Timing chart (P.5)" for the /RST signal timing chart.

[^1]:
 (1) /RST
 (2) (/RST)
 (3) TXN
 (4) TXP
 (5) GND_TX
 (6) $\mathrm{VCC}-\mathrm{TX}$
 (7) NC

 Tolerance unless otherwise noted: $\pm 0.1, \pm 2^{\circ}$ R0.3 max.
 Lead material: Cu alloy with Ag plating Shaded area indicates burr.
 (1) STATUS
 (2) Vcc_RX1
 (3) GND_RX
 (4) RXN
 (5) RXP
 (6) $\left(V c c _R X 2\right)$
 (7) Vcc_RX2

