PSD (position sensitive detector)

- Surface mount type
 one-dimensional PSD
 S14241

- Two-dimensional PSD
 S2044

- PSD module
 C10443-02
PSD (position sensitive detector)
Contents

PSD and application examples ... 3

PSD ... 4
 - One-dimensional PSD ... 4
 - Two-dimensional PSD .. 5

Applied products of PSD .. 6
 - PSD signal processing circuits 6
 - PSD modules .. 6
 - Signal processing unit for PSD module 6
Various methods are available for detecting the position of incident light, including methods using an array of many small detectors and a multi-element detector (e.g., image sensor). In contrast to these, the PSD is a monolithic device designed to detect the position of incident light. Since the PSD is a non-segmented photosensor that makes use of the surface resistance of the photodiode, it provides continuous electrical signals and offers excellent position resolution, fast response, and high reliability. Hamamatsu PSDs are fabricated using our unique semiconductor process technology and have the following features:

- Excellent position resolution
- Wide spectral response range
- High-speed response
- Simultaneously detection light level and center-of-gravity position of light spot
- High reliability

The PSD is used in a wide range of fields such as measurements of position, angles, distortion, vibration, and lens reflection/refraction. Applications also include precision measurement such as laser displacement meters, as well as optical remote control devices, distance sensors, and optical switches.

Schematic of PSD cross section

![Schematic of PSD cross section](image)

- Conversion formula for light spot incident position

\[
\frac{I_{X2} - I_{X1}}{I_{X1} + I_{X2}} = \frac{2x}{L_x}
\]

Principle of triangulation

With the optical system shown in the figure on the right, the distance between the light receiving position of the PSD and the object is related to the following equation from the principle of triangulation. This allows obtaining the distance from the PSD output value.

\[
L = B \times \frac{f}{d}
\]

- \(L\): distance to the object
- \(B\): distance between lens optical axes
- \(f\): distance between lens and PSD
- \(d\): PSD light receiving position

Application examples

- **Auto-focus**: The PSD measures the distance to the screen to autofocus the image.
- **Obstacle detection**: The PSD measures distance to avoid obstacles.
One-dimensional PSD

These PSDs have a belt-like photosensitive area and detect the position along the longer direction.

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Photosensitive area (mm)</th>
<th>Resistance length (mm)</th>
<th>Inter electrode resistance $V_b=0.1\text{ V}$ (kΩ)</th>
<th>Spectral response range (nm)</th>
<th>Package</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4583-04</td>
<td>1 x 3</td>
<td>3</td>
<td>140</td>
<td>760 to 1100</td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>S4584-04</td>
<td>1 x 3.5</td>
<td>3.5</td>
<td>140</td>
<td>760 to 1100</td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>S4584-06</td>
<td>1 x 3.5</td>
<td>3.5</td>
<td>140</td>
<td>320 to 1100</td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>S3274-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7105-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>S7105-06</td>
<td>1 x 4.2</td>
<td>4.2</td>
<td>140</td>
<td>320 to 1100</td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>S7105-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glass epoxy</td>
<td></td>
</tr>
<tr>
<td>S7105-05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plastic</td>
<td></td>
</tr>
<tr>
<td>S15430-01CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S15430-02CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glass epoxy</td>
<td></td>
</tr>
<tr>
<td>S15430-03CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ceramic</td>
<td></td>
</tr>
<tr>
<td>S3932</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ceramic</td>
<td></td>
</tr>
<tr>
<td>S14241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glass epoxy</td>
<td></td>
</tr>
<tr>
<td>S8543</td>
<td>0.7 x 24</td>
<td>24</td>
<td>140</td>
<td>320 to 1100</td>
<td>Ceramic</td>
<td></td>
</tr>
</tbody>
</table>
Two-dimensional PSD

These PSDs detect two-dimensional positions.

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Photosensitive area (mm)</th>
<th>Resistance length (mm)</th>
<th>Interelectrode resistance $V_b=0.1\ V$ (kΩ)</th>
<th>Spectral response range (nm)</th>
<th>Package</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2044*</td>
<td>4.7 × 4.7</td>
<td>5.7</td>
<td>10</td>
<td>320 to 1060</td>
<td>Metal</td>
<td>[Image]</td>
</tr>
<tr>
<td>S5990-01</td>
<td>4 × 4</td>
<td>4.5</td>
<td>7</td>
<td>320 to 1100</td>
<td>Ceramic chip carrier</td>
<td>[Image]</td>
</tr>
<tr>
<td>S5991-01</td>
<td>9 × 9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>[Image]</td>
</tr>
</tbody>
</table>

*1: Corresponds to small spot light

Examples of position detectability

[Ta=25 °C, $\lambda=900\ nm$ (S2044), $\lambda=830\ nm$ (S5990-01, S5991-01), light spot size: $\phi 0.2\ mm$]

[S2044]

Line interval: 0.5 mm

[S5990-01]

Line interval: 0.4 mm

[S5991-01]

Line interval: 1 mm
Applied products of PSD

PSD signal processing circuits

DC type

These are signal processing circuits for DC light detection.

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Compatible PSD</th>
<th>Output</th>
<th>Dimensions (mm)</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3683-02</td>
<td>One-dimensional PSD</td>
<td>Analog</td>
<td>66 × 56 × 15</td>
<td></td>
</tr>
<tr>
<td>C9068</td>
<td></td>
<td>Digital (RS-232C)</td>
<td>110 × 75 × 15</td>
<td></td>
</tr>
<tr>
<td>C4674-01</td>
<td>Two-dimensional PSD</td>
<td>Analog</td>
<td>90 × 65 × 15</td>
<td></td>
</tr>
<tr>
<td>C9069</td>
<td></td>
<td>Digital (RS-232C)</td>
<td>110 × 75 × 15</td>
<td></td>
</tr>
</tbody>
</table>

PSD modules

The high-precision analog output position detectors combine a PSD for precision photometry with a low-noise amplifier.

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Built-in PSD</th>
<th>Photosensitive area (mm)</th>
<th>Peak sensitivity wavelength (nm)</th>
<th>Photosensitivity1 (mV/µW)</th>
<th>Output noise voltage V_n Dark state (mVp-p)</th>
<th>Cutoff frequency f_c -3 dB (kHz)</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10443-01</td>
<td>Two-dimensional PSD</td>
<td>4 × 4</td>
<td>960</td>
<td>-60</td>
<td>1</td>
<td>DC 16</td>
<td></td>
</tr>
<tr>
<td>C10443-02</td>
<td></td>
<td>9 × 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1: $\lambda = \lambda_p$

Signal processing unit for PSD module

The product converts the output of the PSD module into position signals and outputs in analog and digital form.

<table>
<thead>
<tr>
<th>Type no.</th>
<th>Compatible PSD module</th>
<th>Analog output (V)</th>
<th>Digital output</th>
<th>Minimum measurement time interval (ms)</th>
<th>Dimensions (mm)</th>
<th>Photo</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10460</td>
<td>C10443-01/-02</td>
<td>-10 to +10</td>
<td>Conforms to RS-232C (16-bit)</td>
<td>2</td>
<td>150 × 30 × 100</td>
<td></td>
</tr>
</tbody>
</table>
Main Products

Opto-semiconductors
- Si photodiodes
- APD
- MPCC
- Photo IC
- Image sensors
- PSD
- Infrared detectors
- LED
- Optical communication devices
- Automotive devices
- X-ray flat panel sensors
- MEMS devices
- Mini-spectrometers
- Opto-semiconductor modules

Electron Tubes
- Photomultiplier tubes
- Photomultiplier tube modules
- Microchannel plates
- Image intensifiers
- Xenon lamps / Mercury-xenon lamps
- Deuterium lamps
- Light source applied products
- Laser applied products
- Microfocus X-ray sources
- X-ray imaging devices

Imaging and Processing Systems
- Scientific cameras
- Spectroscopic and optical measurement systems
- Ultrafast photometry systems
- Life science systems
- Medical systems
- Non-destructive inspection products
- Semiconductor manufacturing support systems
- Material research systems

Laser Products
- Single chip laser diodes
- Laser diode bar modules
- Quantum cascade lasers
- Applied products of semiconductor lasers
- Solid state lasers
- Laser related products

Japan:
HAMAMATSU PHOTONICS K.K.
325-6, Sunayama-cho, Naka-ku,
Hamamatsu City, Shizuoka Pref. 430-8587, Japan
Telephone: (81)53-452-3270, Fax: (81)53-456-7689
E-mail: intl-div@hq.hpk.co.jp

China:
HAMAMATSU PHOTONICS (CHINA) CO., LTD.
Main Office
1201 Tower B, Jiaming Center, 27 Donganhuang Beilu,
Chaoyang District, 100020 Beijing, P.R. China
Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866
E-mail: hpc@hamamatsu.com.cn

Shanghai Branch
4905 Wheelock Square, 1717 Nanjing Road West,
Jinan District, 200040 Shanghai, P.R. China
Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017
E-mail: hpcsh@hamamatsu.com.cn

Tianjin:
HAMAMATSU PHOTONICS TAIWAN CO., LTD.
Main Office
8F-3, No.158, Section 2, Gongduo 5th Road,
East District, Hsinchu District, Hsinchu, Taiwan R.O.C.
Telephone: (886)3-659-0080, Fax: (886)3-659-0081
E-mail: info@hamamatsu.com.tw

U.S.A.:
HAMAMATSU CORPORATION
Main Office
360 Foothill Road, Bridgewater, NJ 08807, U.S.A.
Telephone: (1)908-231-2135, Fax: (1)908-231-1218
E-mail: usa@hamamatsu.com

California Office
2875 Moorpark Ave., San Jose, CA 95128, U.S.A.
Telephone: (1)408-261-2022, Fax: (1)408-261-2522
E-mail: usa@hamamatsu.com

Germany, The Netherlands, Poland, Denmark, Israel:
HAMAMATSU PHOTONICS DEUTSCHLAND GMBH
Main Office
Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany
Telephone: (49)8152-375-0, Fax: (49)8152-265-8
E-mail: info@hamamatsu.de

Netherlands Office
Transistorstraat 7, 1322 CJ Almere, The Netherlands
Telephone: (31)36-505384, Fax: (31)36-524948
E-mail: info@hamamatsu.nl

Poland Office
10 Ciołka Street, 126-127 01-402 Warsaw, Poland
Telephone: (48)22-646-0016, Fax: (48)22-646-0018
E-mail: poland@hamamatsu.de

Sales Offices

Danish Office
Lautrupshøj 1-3, 2750 Ballerup, Denmark
Telephone: (45)44-20-99-49, Fax: (45)44-20-99-10
E-mail: info@hamamatsu.dk

Israel Office (HAMAMATSU PHOTONICS ISRAEL LTD.)
Ha-Menofim 10 st., third floor, 4672561 Herzliya, Israel
E-mail: Info@hamamatsu.co.il

France, Switzerland, Belgium, Spain:
HAMAMATSU PHOTONICS FRANCE S.A.R.L.
Main Office
19 Rue du Saule Trapu, Parc du Moulin de Massy,
91882 Massy Cedex, France
Telephone: (33)1 69 53 71 10, Fax: (33)1 69 53 71 10
E-mail: info@hamamatsu.fr

Swiss Office
Dornachplatz 7, 4500 Solothurn, Switzerland
Telephone: (41)32-625-60-60, Fax: (41)32-625-60-61
E-mail: swiss@hamamatsu.ch

Belgian Office
Axiaparc Technology, Rue André Dumont 7
1435 Mont-Saint-Guibert, Belgium
Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67
E-mail: info@hamamatsu.be

North Europe and CIS:
HAMAMATSU PHOTONICS NORDEN AB
Main Office
Torshammsgatan 35 16440 Kista, Sweden
Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01
E-mail: info@hamamatsu.se

Russian Office
11, Christoprudny Boulevard, Building 1, Office 114,
101000, Moscow, Russia
Telephone: (7)495 258 85 18, Fax: (7)495 258 85 19
E-mail: info@hamamatsu.ru

Italy:
HAMAMATSU PHOTONICS ITALIA S.R.L.
Main Office
Strada della Moia, 1 int. 6, 20044 Arsego (Milano), Italy
Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 24 31
E-mail: info@hamamatsu.it

Rome Office
Viale Cesare Pavese, 435, 00144 Roma, Italy
Telephone: (39)6-50 51 34 54
E-mail: informa@hamamatsu.it

United Kingdom:
HAMAMATSU PHOTONICS UK LIMITED
Main Office
2 Howard Court, 10 Trevis Road, Welwyn Garden City,
Hertfordshire, AL7 1WU, UK
Telephone: (44)1707-294888, Fax: (44)1707-325777
E-mail: info@hamamatsu.co.uk

South Africa Contact:
9 Beukes Avenue, Highway Gardens, Edenvale
1609 South Africa
Telephone/Fax: (27)11-609-0367

Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein.
© 2022 Hamamatsu Photonics K.K.

Quality, technology and service are part of every product.