

Photosensors with front-end IC

S15597-01CT S15658-01CT

Compact APD suitable for various light level detection

The S15597-01CT and S15658-01CT are compact optical devices that integrate a Si APD and a preamp. They have a builtin DC feedback circuit for reducing the effects of background light. They also provide excellent noise and frequency characteristics. We provide an evaluation kit for these products. Contact us for detailed information.

Features

Applications

Distance measurement

- High-speed response
- Two-level gain switch function (low gain: single output, high gain: differential output)
- Reduced background light effects
- Small waveform distortion when excessive light is incident

Structure

Parameter	Symbol	S15597-01CT	S15658-01CT	Unit	
Detector	-	Si APD			
Photosensitive area size*1	A	φ0.2	φ0.5	mm	
Package	-	Glass epoxy			
Seal material	-	Silicone resin			

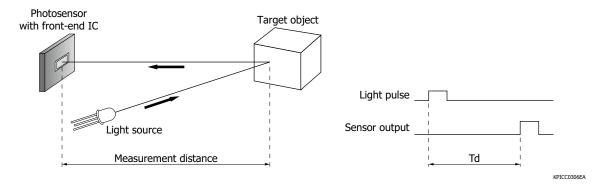
*1: Photosensitive area in which a typical gain can be obtained

Absolute maximum ratings

Parameter	Symbol	Condition	Value	Unit
Supply voltage (for preamp)	Vcc max		4.5	V
Reverse voltage (for APD)	V_APD		0 to VBR	V
Reverse current (DC)	IR max		0.2	mA
Forward current	IF max		10	mA
DCFB terminal voltage	-		Vcc + 0.7	V
Gain terminal voltage	-		Vcc + 0.7	V
Operating temperature	Topr	No dew condensation*2	-40 to +105	°C
Storage temperature	Tstg	No dew condensation*2	-40 to +125	°C
Soldering temperature*3	Tsol		260 °C (twice)	°C

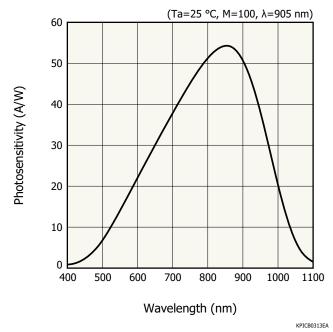
*2: When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability.
*3: Reflow soldering, IPC/JEDEC J-STD-020 MSL 4, see P.8

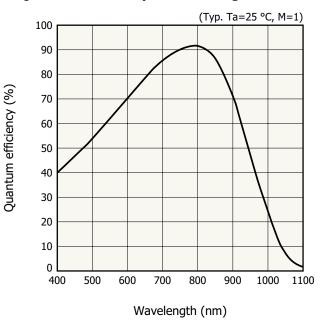
Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

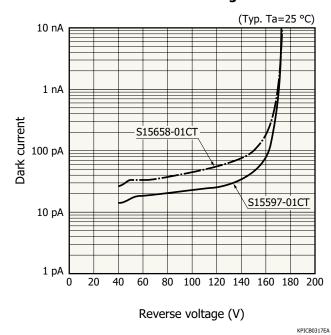

			c	15597-01C	т	c	15658-01C	т	
Parameter	Symbol	Condition	Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
Supply voltage	Vcc1, Vcc2		3.135	3.3	3.465	3.135	3.3	3.465	V
Spectral response range	λ		۷	00 to 110	0	400 to 1100		nm	
Peak sensitivity wavelength	λр	M=100	-	840	-	-	840	-	nm
Photosensitivity	S	λ=905 nm, M=1	-	0.5	-	-	0.5	-	A/W
Breakdown voltage	VBR	ID=100 μA	155	175	195	155	175	195	V
Temperature coefficient of breakdown voltage	ΔTVbr		0.8	1.0	1.2	0.8	1.0	1.2	V/°C
Transien oden es envelifier sein	<u> </u>	Low gain	-	3	-	-	3	-	kV/A
Transimpedance amplifier gain	G	High gain	-	64	-	-	64	-	
Current consumption	Ic	Low gain	15	25	34	15	25	34	mA
Current consumption		High gain	17	26	37	17	26	37	
	fcl	Low gain	-	0.01	-	-	0.01	-	MHz
Low cutoff frequency		High gain	-	0.5	-	-	0.5	-	
	fch	Low gain	100	180	260	90	160	240	MHz
High cutoff frequency		High gain	90	160	230	80	150	220	
Output noise voltage	VON	f=20 MHz, M=100 High gain	-	2.0	-	-	2.0	-	mV rms
Output voltage level	-	Low gain	0.5	0.9	1.3	0.5	0.9	1.3	- V
		High gain	0.5	1	1.5	0.5	1	1.5	
Output offset voltage	Voffset	High gain	-	-	±100	-	-	±100	mV
Maximum output voltage	Vn n mou	Low gain	-	-0.5	-	-	-0.5	-	- V
amplitude	Vp-p max	High gain	-	±0.7	-	-	±0.7	-	

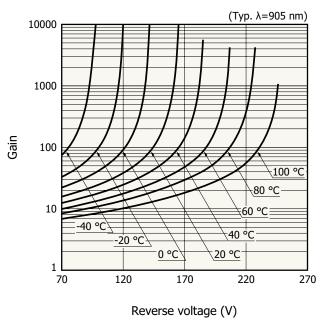
Electrical and optical characteristics (Ta=25 °C)

Distance measuring method


Distance L is calculated from the time difference Td between the light source's light emission timing and sensor output and the speed of light c.

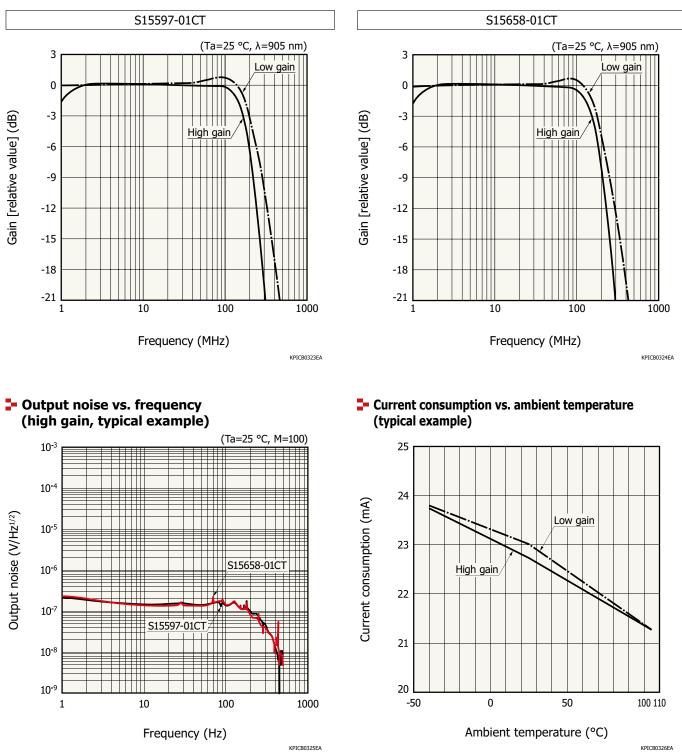

 $L = (1/2) \times c \times Td$


Spectral response


Quantum efficiency vs. wavelength

KAPDB0277EC

Dark current vs. reverse voltage


- Gain vs. reverse voltage

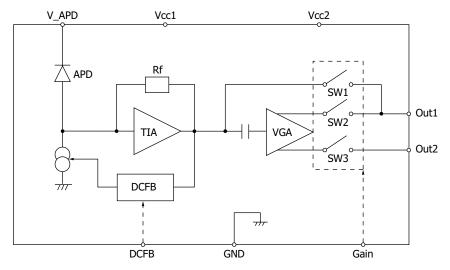
KPICB0314EA

4

Frequency characteristics (typical example)

Truth table

Gain

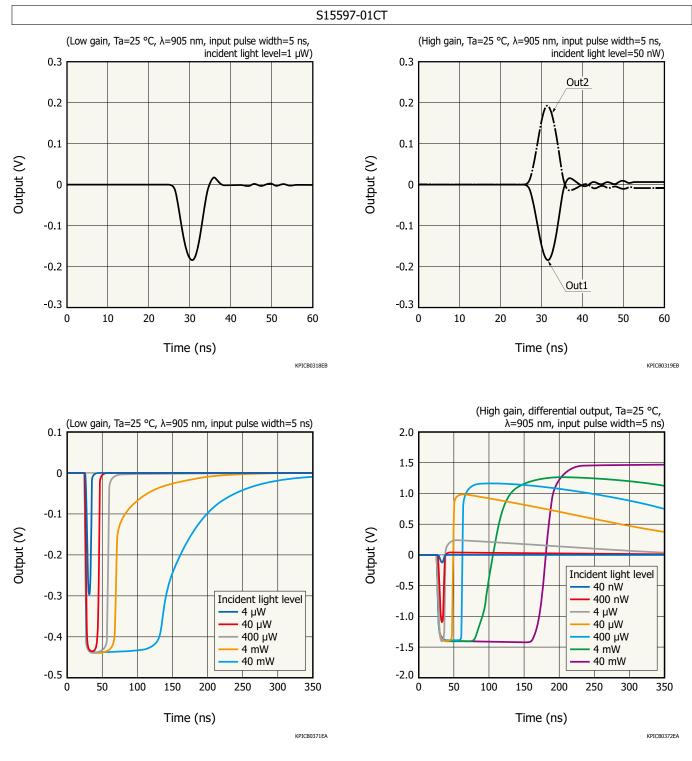

Setting	Gain		
0	Low gain (× 1)		
1	High gain (× 20)		

DC feedback circuit

Setting	Background light elimination function		
0	OFF		
1	ON		

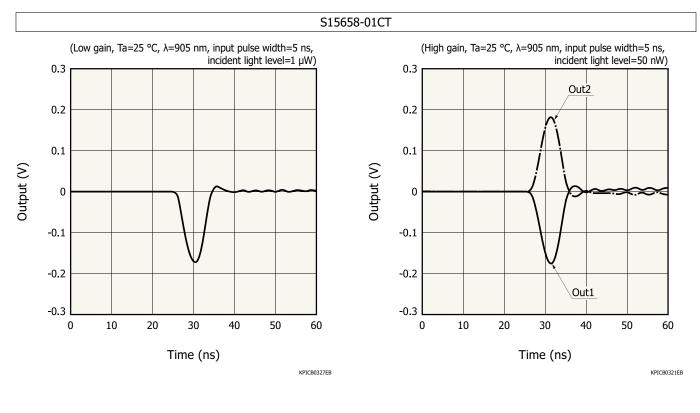
Note: The pull-up resistor of the digital input terminal is 10 k $\!\Omega$

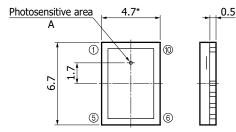
Block diagram



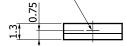
The DCFB (DC feedback) circuit detects the DC component of photocurrent, and reduces the effects of background light through the differential processor.

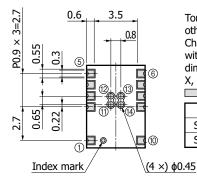
KPICC0285ED


Output waveform examples



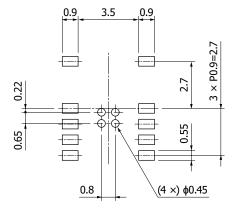
Photosensors with front-end IC





Dimensional outline (unit: mm)

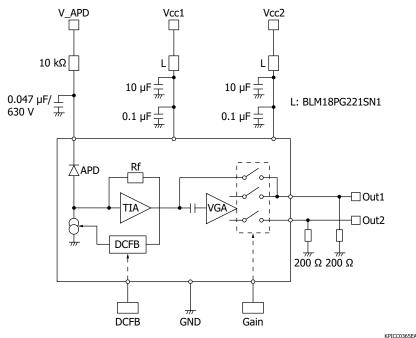
Photosensitive surface


Torelance unless otherwise noted: ± 0.2 Chip position accuracy with respect to package dimensions marked* X, Y $\leq \pm 0.2$ Au electrodes				
Type no. A				
S15597-01CT				
S15658-01CT				

KPICA0114EA

Pin connections

Pin no.	Function	Pin no.	Function
1	DCFB	8	Vcc1
2	Out1	9	GND
3	Out2	10	V_APD
4	GND	11	GND
5	GND	12	GND
6	Gain	13	GND
7	Vcc2	14	GND


Recommended land pattern (unit: mm)

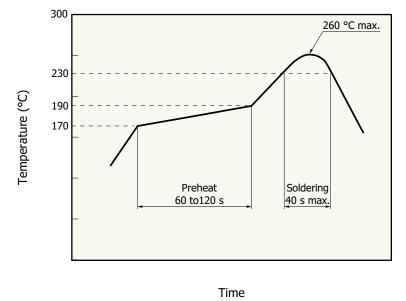
Torelance unless otherwise noted: ± 0.1

KPICC0364EA

Connection example (50 Ω system)

When using the photosensor with front-end IC in a 50 Ω system, connect resistors with the same resistance (200 Ω in the above figure) to output loads Out1 and Out2. If resistors with the same resistance are not connected to the output loads, the waveform may be distorted or the output may oscillate.

Handling of temperature characteristics of APD gain


The gain of the APD built into the photosensor with front-end IC varies depending on the temperature. The following two methods are available for handling this issue in using the sensor over a wide temperature range.

① Temperature correction method, which controls the reverse voltage according to the temperature change A thermistor or other temperature sensor is installed near the APD to measure the APD's temperature. The reverse voltage after APD temperature correction is expressed by the following equation using temperature T of the APD.

VR (after temperature correction) = VR (at 25 °C) + (T - 25) $\times \Delta TVBR$

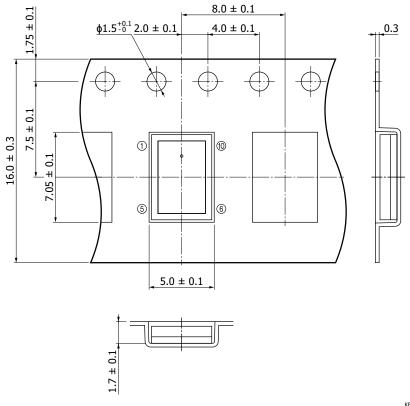
- © Temperature control method, which keeps the APD temperature constant
 - A TE-cooler or an equivalent device is used to maintain a constant APD temperature.

Recommended soldering conditions

KPICC0346EA

• This product supports lead-free soldering. After unpacking, store it in an environment at a temperature of 30 °C or less and a humidity of 60% or less, and perform soldering within 72 hours.

• The effect that the product receives during reflow soldering varies depending on the circuit board and reflow oven that are used. Before actual reflow soldering, check for any problems by testing out the reflow soldering methods in advance.



Reel packing specifications

Reel (conforms to JEITA ET-7200)

Outer diameter	Hub diameter	Tape width	Material	Electrostatic characteristics
φ254 mm	φ100 mm	16 mm	PS	Conductive

Embossed tape (unit: mm, material: PS, conductive)

KPICC0366EA

Packing quantity 1000 pcs/reel

Packing state

Reel and desiccant in moisture-proof packing (vacuum-sealed)

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer
- \cdot Precautions / Surface mount type products
- Catalogs
- \cdot Selection guide / Photo IC

Evaluation kits for photosensor with front-end IC C16188-03, C16189-03

Evaluation kits equipped with S15597-01CT / S15658-01CT are available. Contact us for detailed information.

- · C16188-03 (Equipped with S15597-01CT)
- · C16189-03 (Equipped with S15658-01CT)

Accessories

- · IC power cable
- · APD power cable

Equivalent circuit

Information described in this material is current as of September 2024.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1120-1 ICNINO-CRO, CNUO-KU, HAMAMATSU CIUX, 435-8558 Japan, Ielephone: (1)908 231 0960, Fax: (3)105-434-3311, FaX: (31)53-434-5184 U.S.A.: HAMAMATSU CORPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A.; Telephone: (1)908 231 0960, Fax: (3)908 231 1218 Germany: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH: Arzbergerst: 10, 82211 Herrsching am Ammersee, Germany, Telephone: (4)98152 375 0, Fax: (4)98152 265 8 E mail: info@hamamatsu.de France: HAMAMATSU PHOTONICS RANCE S.A.R.L.: 19 Rue du Saule Trapu, Parc du Moulin de Massy, 9182 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E mail: info@hamamatsu.de United Kingdom: HAMAMATSU PHOTONICS SULL UITED: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordhire, AL7 1BW, UK, Telephone: (4)1707 23488, Fax: (44)1707 232777 E mail: info@hamamatsu.co.uk North Europe: HAMAMATSU PHOTONICS ITALIA S.R.L.: Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy, Telephone: (49)8 50 031 00, Fax: (49)8 509 031 01 E mail: info@hamamatsu.de Italy: HAMAMATSU PHOTONICS (CHINA) CO, LTD.: 1201, Tower B, Jiaming Center, 27 Dongsanhuan Bellu, Chaoyang District, 100020 Beijng, PR. China, Telephone: (86)10 6586 6086, Fax: (86)10 6586 2866 E mail: hpc@hamamatsu.co.uc Taiwan: HAMAMATSU PHOTONICS (CHINA) CO, LTD.: 13F 1, No.101, Section 2, Gongdao Sth Road, East Dist., Hsinchu City, 300046, Taiwan(R.O.C) Telephone: (886)3 659 0080, Fax: (886)3 659 0081 E mail: info@hamamatsu.co.uc