

CCD image sensors

S16011 series

Enhanced near infrared sensitivity, Constant element temperature control

The S16011 series is a family of back-thinned FFT (full frame transfer)-CCD image sensors for photometric applications that offer improved sensitivity in the near infrared region at wavelengths longer than 800 nm. In addition to having high infrared sensitivity, the S16011 series can be used as an image sensor with a long photosensitive area in the direction of the sensor height by binning operation, making it suitable for detectors in Raman spectroscopy. Binning operation also ensures even higher S/N and signal processing speed compared to methods that use an external circuit to add signals digitally. In addition, a TE-cooler is built into the package to keep the element temperature constant (approx. 5 °C) during operation.

The S16011 series has a pixel size of $14 \times 14 \,\mu$ m and is available in two image areas of $14.336 (H) \times 0.896 (V) \,\mu$ m (1024 × 64 pixels) and 28.672 (H) × 0.896 (V) mm (2048 × 64 pixels). The S16011 series is pin compatible with the S11850-1106, and so operates under the same drive conditions.

Features

- NIR high sensitivity: QE=36% (λ=1000 nm)
- One-stage TE-cooled type (element temperature: approx. 5 °C)
- High CCD node sensitivity: 6.5 μV/e⁻
- High full well capacity, wide dynamic range (with anti-blooming function)
- 🔁 Pixel size: 14 × 14 μm
- MPP operation

Spectral response (without window, typical example)*1

KMPDB0596EA

1

*1: Spectral response with quartz glass is decreased according to the spectral transmittance characteristic of window material.

- Applications

Raman spectrometers, etc.

Selection guide

Type no.	Total number of pixels	Number of effective pixels	Image size [mm (H) × mm (V)]	Readout speed max. (MHz)
S16011-1006	1044 × 70	1024 × 64	14.336 × 0.896	0.5
S16011-1106	2068 × 70	2048 × 64	28.672 × 0.896	0.5

Structure

Parameter	S16011-1006	S16011-1106	Unit		
Image size $(H \times V)$	14.336 × 0.896	28.672 × 0.896	mm		
Pixel size (H \times V)	14 :	14 × 14			
Number of total pixels	1044 × 70	2068 × 70	-		
Numbe of effective pixels	1024 × 64	2048 × 64	-		
Vertical clock phase	2-phase				
Horizontal clock phase	4-phase				
Output circuit	One-stage MOSFET source follower				
Package	28-pin ceramic DIP (refer to dimensional outline)				
Window	Quartz glass ^{*2}				

*2: Hermetic sealing

Absolute maximum ratings (Ta=25 °C, unless otherwise noted)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating temperature* ³	Topr		-50	-	+50	°C
Storage temperature	Tstg		-50	-	+70	°C
Output transistor drain voltage	Vod		-0.5	-	+30	V
Reset drain voltage	Vrd		-0.5	-	+18	V
Overflow drain voltage	Vofd		-0.5	-	+18	V
Vertical input source voltage	VISV		-0.5	-	+18	V
Horizontal input source voltage	VISH		-0.5	-	+18	V
Overflow gate voltage	Vofg		-10	-	+15	V
Vertical input gate voltage	VIG1V, VIG2V		-10	-	+15	V
Horizontal input gate voltage	Vig1h, Vig2h		-10	-	+15	V
Summing gate voltage	Vsg		-10	-	+15	V
Output gate voltage	Vog		-10	-	+15	V
Reset gate voltage	Vrg		-10	-	+15	V
Transfer gate voltage	Vtg		-10	-	+15	V
Vertical shift register clock voltage	Vp1v, Vp2v		-10	-	+15	V
Horizontal shift register clock voltage	Vp1H, Vp2H Vp3H, Vp4H		-10	-	+15	v
TE-cooler maximum current*4 *5	Imax	Tc*6=Th*7=25 °C	-	1.8	-	A
TE-cooler maximum voltage	Vmax	Tc*6=Th*7=25 °C	-	3.5	-	V
Thermistor power dissipation	Pd_th		-	-	100	mW

*3: Chip temperature

*4: If the current greater than this value flows into the thermoelectric cooler, the heat absorption begins to decrease due to the Joule heat. It should be noted that this value is not the damage threshold value. To protect the thermoelectric cooler and maintain stable operation, the supply current should be less than 60% of this maximum current.

*5: To ensure stable temperature control, ΔT (temperature difference between Th and Tc) should be less than 30 °C. If ΔT exceeds 30 °C, product characteristics may deteriorate. For example, the dark current uniformity may degrade.

*6: Temperature of the cooling side of thermoelectric cooler

*7: Temperature of the heat radiating side of thermoelectric cooler

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (MPP mode, Ta=25 °C)

	Parameter		Symbol	Min.	Тур.	Max.	Unit	
Output transistor	drain voltage		VOD	23	24	25	V	
Reset drain volta	ge		VRD	11	12	13	V	
Overflow drain vo	oltage		VOFD	11	12	13	V	
	Input source		VISV, VISH	-	VRD	-	V	
Test point	Vertical input gate		VIG1V, VIG2V	-9	-8	-	V	
	Horizontal input ga	ate	VIG1H, VIG2H	-9	-8	-	V	
Overflow gate vo	ltage		VOFG	0	12	13	V	
Summing gate w	ltago	High	VSGH	4	6	8	V	
Summing gate vi	Jildye	Low	VSGL	-6	-5	-4	v	
Output gate volta	age		VOG	4	5	6	V	
Reset gate voltage		High	VRGH	4	6	8	V	
		Low	VRGL	-6	-5	-4		
Transfer gate voltage		High	VTGH	4	6	8	— v	
		Low	VTGL	-9	-8	-7		
Vertical shift register clock voltage		High	VP1VH, VP2VH	4	6	8	V	
		Low	VP1VL, VP2VL	-9	-8	-7		
Horizontal shift register clock voltage		High	VP1HH, VP2HH VP3HH, VP4HH	4	6	8		
		Low	VP1HL, VP2HL VP3HL, VP4HL	-6	-5	-4	V	
Substrate voltage	2		VSS	-	0	-	V	
External load res	istance		RL	90	100	110	kΩ	

Electrical characteristics (Ta=25 °C, operating conditions: Typ.)

Devenue et eu		Councile of	N.4	T	NA	11.2
Parameter		Symbol	Min.	l Iyp.	Max.	Unit
Signal output frequency*8		fc	-	0.25	0.5	MHz
Vortical chift register canacitance	-1006	Course Coorse		600		
vertical shift register capacitance	-1106	CPIV, CP2V	-	1200	-	μr
Horizontal chift register canacitance	-1006	Ср1н, Ср2н	_	80		
Horizontal shift register capacitance	-1106	Срзн, Ср4н	-	160	-	μ
Summing gate capacitance		Csg	-	10	-	pF
Reset gate capacitance		Crg	-	10	-	pF
Transfor gato capacitanco	-1006	CTC	_	30	_	пE
Transfer gate capacitance	-1106	CIG	-	60	-	h h
Charge transfer efficiency*9		CTE	0.99995	0.99999	-	-
DC output level*8		Vout	16	17	18	V
Output impedance*8		Zo	-	10	-	kΩ
Power consumption*8 *10		Р	-	4	-	mW

*8: The values depend on the load resistance. (VoD=24 V, RL=100 k Ω)

*9: Charge transfer efficiency per pixel, measured at half of the full well capacity

*10: Power consumption of the on-chip amplifier plus load resistance

Electrical and optical characteristics (Ta=25 °C, operating conditions: Typ., unless otherwise noted)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Saturation output	voltage	Vsat	-	Fw × CE	-	V
	Vertical	Ew.	50	60	-	ko
Full well capacity	Horizontal	I VV	250	300	-	ĸe
Conversion efficiency*11		CE	5.5	6.5	7.5	µV/e⁻
Dark current*12		DS	-	50	500	e ⁻ /pixel/s
Readout noise*13		Nread	-	6	15	e⁻ rms
Dynamic range*14	Line binning	Drange	16600	50000	-	-
Spectral response range		λ	-	200 to 1100	-	nm
Photoresponse no	nuniformity* ¹⁵	PRNU	-	±3	±10	%

*11: The values depend on the load resistance (VoD=24 V, RL=100 k Ω).

*12: Dark current is reduced to half for every 5 to 7 °C decrease in temperature.

*13: Chip temperature: -40 °C, fc=20 kHz

*14: Dynamic range = Full well capacity / Readout noise

*15: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 450 nm)

Photoresponse nonuniformity = $\frac{\text{Fixed pattern noise (peak to peak)}}{\text{Figure 1}} \times 100 [\%]$ Signal

Dark current vs. temperature

0 10 20 30

KMPDB0304EB

4

50 40

(Typ.)

KMPDC0596EB

Device structure (schematic of CCD chip as viewed from top of dimensional outline)

Note: When viewed from the direction of the incident light, the horizontal shift register is covered with a thick silicon layer (dead layer). However, long-wavelength light passes through the silicon dead layer and may possibly be detected by the horizontal shift register. To prevent this, provide light shield on that area as needed.

Timing chart (line binning)

KMPDC0847EA

Parameter		Symbol	Min.	Тур.	Max.	Unit
	Pulse width*16	Tpwv	6	8	-	μs
F1V, F2V, 1G	Rise and fall times ^{*16}	Tprv, Tpfv	20	-	-	ns
	Pulse width*16	Tpwh	1000	2000	-	ns
	Rise and fall times*16	Tprh, Tpfh	10	-	-	ns
гіп, г2п, гэп, г ч п	Pulse overlap time	Tovrh	500	1000	-	ns
	Duty ratio ^{*16}	-	40	50	60	%
	Pulse width*16	Tpws	1000	2000	-	ns
SC	Rise and fall times ^{*16}	Tprs, Tpfs	10	-	-	ns
30	Pulse overlap time	Tovrh	500	1000	-	ns
	Duty ratio ^{*16}	-	40	50	60	%
P.C.	Pulse width	Tpwr	100	1000	-	ns
KG	Rise and fall times	Tprr, Tpfr	5	-	-	ns
TG-P1H	Overlap time	Tovr	1	2	-	μs

*16: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outline (unit: mm, tolerance unless otherwise noted: ±0.15)

KMPDA0632EB

Pin connections

Pin no.	Symbol	Function	Remark (standard operation)
1	OS	Output transistor source	RL=100 kΩ
2	OD	Output transistor drain	+24 V
3	OG	Output gate	+5 V
4	SG	Summing gate	Same timing as P4H
5	SS	Substrate	GND
6	RD	Reset drain	+12 V
7	Th1	Thermistor	
8	P-	TE-cooler-	
9	P4H	CCD horizontal register clock-4	
10	P3H	CCD horizontal register clock-3	
11	P2H	CCD horizontal register clock-2	
12	P1H	CCD horizontal register clock-1	
13	IG2H	Test point (horizontal input gate-2)	-8 V
14	IG1H	Test point (horizontal input gate-1)	-8 V
15	OFG	Overflow gate	+12 V
16	OFD	Overflow drain	+12 V
17	ISH	Test point (horizontal input source)	Connect to RD
18	ISV	Test point (vertical input source)	Connect to RD
19	SS	Substrate	GND
20	RD	Reset drain	+12 V
21	P+	TE-cooler+	
22	Th2	Thermistor	
23	IG2V	Test point (vertical input gate-2)	-8 V
24	IG1V	Test point (vertical input gate-1)	-8 V
25	P2V	CCD vertical register clock-2	
26	P1V	CCD vertical register clock-1	
27	TG	Transfer gate	Same timing as P2V
28	RG	Reset gate	

OS output waveform example

Specifications of built-in TE-cooler (Typ., vacuum condition)

Parameter	Symbol	Condition	Specification	Unit
Internal resistance	Rint	Ta=25 °C	1.6	Ω
Maximum heat absorption*17	Qmax		4.0	W

*17: This is a theoretical heat absorption level that offsets the temperature difference in the thermoelectric cooler when the maximum current is supplied to the unit.

HAMAMATSU PHOTON IS OUR BUSINESS

KMPDB0469EA

Specifications of built-in temperature sensor

A thermistor chip is built in the same package with a CCD chip, and the CCD chip temperature can be monitored with it. A relation between the thermistor resistance and absolute temperature is expressed by the following equation.

 $\begin{array}{l} \mathsf{RT1} = \mathsf{RT2} \times \mathsf{exp} \; \mathsf{BT1/T2} \; (1/\mathsf{T1} - 1/\mathsf{T2}) \\ \mathsf{RT1:} \; \mathsf{Resistance} \; \mathsf{at} \; \mathsf{absolute} \; \mathsf{temperature} \; \mathsf{T1} \; [\mathsf{K}] \\ \mathsf{RT2:} \; \mathsf{Resistance} \; \mathsf{at} \; \mathsf{absolute} \; \mathsf{temperature} \; \mathsf{T2} \; [\mathsf{K}] \\ \mathsf{BT1/T2:} \; \mathsf{B} \; \mathsf{constant} \; [\mathsf{K}] \end{array}$

The characteristics of the thermistor used are as follows. R298=10 k Ω B298/323=3900 K

Recommended soldering conditions

Parameter	Specification	Remark
Solder temperature	260 °C max. (once, less than 5 s)	at least 1.8 mm away from lead roots

Precautions

- If the thermoelectric cooler does not radiate away sufficient heat, then the product temperature will rise and cause physical damage
 or deterioration to the product. Make sure there is sufficient heat dissipation during cooling. As a heat dissipation measure, we recommend applying a high heat-conductivity material (silicone grease, etc.) over the entire area between the product and the heatsink (metallic block, etc.), and screwing and securing the product to a heatsink.
- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use a wrist band with an earth ring, in order to prevent electrostatic damage due to electrical charges from friction.
- · Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- · Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- \cdot Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Implement these measures according to the amount of damage that occurs.

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- · Disclaimer
- · Precautions / Image sensors
- Catalog
- · Technical note / CCD image sensors

Information described in this material is current as of June 2025.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

Optical Semiconductor Sales, HAMAMATSU PHOTONICS K.K.

1126-1 Ichino-cho, Chuo-ku, Hamamatsu City, Shizuoka Pref., 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184

1126-1 ICNINO-ChO, CHUO-KU, Hamamatsu CRY, ShiZuoka Prefr, 435-8558 Japan, Ielephone: (81)55-434-3311, FaX: (81)53-434-5184
US.A: HAMAMATSU CRPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1908 231 0960, Fax: (1908 231 2016)
US.A: HAMAMATSU CRPORATION: 360 Foothill Road, Bridgewater, NJ 08807, U.S.A., Telephone: (1908 231 0960, Fax: (1908 231 2016)
France: HAMAMATSU PHOTONICS FOLTSCHLAND GMBH: Arzbergerst. 10, 82211 Herrsching am Anmersee, Germany, Telephone: (49)8152 256 8 E mail: info@hamamatsu.de
France: HAMAMATSU PHOTONICS SELTSCHLAND GMBH: Arzbergerst. 10, 82211 Herrsching am Anmersee, Germany, Telephone: (49)8152 257 0, Fax: (49)1572 25877 10 E mail: info@hamamatsu.de
Inited Kingdom: HAMAMATSU PHOTONICS VK LIMITED: 2 Howard Court,10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 18W, UK, Telephone: (44)1707 294888, Fax: (44)1707 325777 E mail: info@hamamatsu.de
Inited Kingdom: HAMAMATSU PHOTONICS VK LIMITED: 2 Howard Court,10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 18W, UK, Telephone: (44)1707 294888, Fax: (44)1707 325777 E mail: info@hamamatsu.de
Inited Kingdom: HAMAMATSU PHOTONICS TALLA S.L.: Strad edlel Mola, 1 inf. 6 20044 Arses (Milano), Italy, Telephone: (39)0 33 58 17 31, Fax: (39)0 39 58 17 41 E mail: info@hamamatsu.de
Inite: HAMAMATSU PHOTONICS TALLA S.L.: Strad edle Mola, 1 inf. 6 20044 Arses (Milano), Italy, Telephone: (39)0 33 58 17 31, Fax: (39)0 39 58 17 41 E mail: info@hamamatsu.de
Taiwan: HAMAMATSU PHOTONICS TALLA S.L.: Strad edle Mola, 1 info. 2 0ongashuan Beliu, Chaoyang District, 100020 Beijing, PR. China, Telephone: (86)10 6586 2866 E mail: hpc@hamamatsu.de
Taiwan: HAMAMATSU PHOTONICS KOREA CO, LTD: 151, IN. 0.01, Section 2, Gongdas 5h Road, East District, NionCM, CO., China, TEL, IN. 0.01, Section 2, Gongdas 5h Road, East District, NionCM, Co., China, TEL, IN. 0.01, Section 2, Gongdas 5h Road, East District, NionCM, Co., China, TEL, IN. 0.01, Section 2, Gongdas 5h Road, Eas matsu.com.cn mamatsu.com.tv