

TDI-CCD area image sensor

S7199-01/-01F

Image sensor with a long, narrow photosensitive area for X-ray imaging

The S7199-01 is a front-illuminated FFT-CCD image sensor developed for X-ray imaging. An FOS (Fiber Optic plate with Scintillator) sensitive to X-rays is directly coupled to the CCD chips, allowing X-ray imaging with high sensitivity. Two CCD chips are arranged in close proximity to configure a long photosensitive area (approx. 150 mm).

The S7199-01 CCD image sensor features TDI mode operation that allows capturing clear, sharp X-ray images of objects moving on a belt conveyor, making it ideal for non-destructive X-ray inspection. FOP type not coated with scintillator material is also provided (S7199-01F).

Features

- 1536 × 128 pixel (× 2 chips)
- Pixel size: 48 × 48 µm
- **Buttable structure of 2 chips**
- TDI (time delay integration) operation
- 100% fill factor
- Wide dynamic range
- Low dark current
- Low readout noise
- MPP operation

Applications

- General X-ray imaging
- > Non-destructive inspection
- Dental panorama

Specifications

Parameter	S7199-01 S7199-01F				
CCD structure	Full frame transfer or TDI				
Window	FOS (fiber optic plate with scintillator)	FOP (fiber optic plate)*1			
Photosensitive area (H \times V)	73.728 × 6.144	mm (× 2 chips)			
X-ray sensitive area	146 × 6 mm	-			
Pixel size $(H \times V)$	48 × 4	48 μm			
Number of total pixels $(H \times V)$	1536 × 128 (× 2 chips)				
Number of effective pixels $(H \times V)$	1536 × 128 (× 2 chips)				
Fill factor	100%				
Vertical clock phase	2 phases				
Horizontal clock phase	2 phases				
Output circuit	Two-stage MOSFET source f	ollower with load resistance			
X-ray resolution	4 to 6 Lp/mm at 60 kVp, 20 μGy	-			
Total dose irradiation	50 Gy max.	-			
Package	40-pin ceramic				
Cooling	Non-cooled				

*1: When using this product for X-ray detection, the user needs to affix a phosphor sheet, etc. to the FOP.

Absolute maximum ratings (Ta=25 °C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage temperature	Tstg	-20	-	+70	°C
Operating temperature	Topr	0	-	+40	°C
OD voltage	Vod	-0.5	-	+20	V
RD voltage	Vrd	-0.5	-	+18	V
ISV voltage	VISV	-0.5	-	+18	V
IGV voltage	VIGV	-15	-	+15	V
IGH voltage	VIGH	-15	-	+15	V
SG voltage	Vsg	-15	-	+15	V
OG voltage	Vog	-15	-	+15	V
RG voltage	Vrg	-15	-	+15	V
TG voltage	Vtg	-15	-	+15	V
Vertical clock voltage	Vp1av, Vp2av Vp1bv, Vp2bv	-15	-	+15	V
Horizontal clock voltage	Vp1ah, Vp2ah Vp1bh, Vp2bh	-15	-	+15	V

Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the product within the absolute maximum ratings.

Operating conditions (MPP mode, Ta=25 °C)

Parameter		Symbol	Min.	Тур.	Max.	Unit
Output transistor drain voltage		Vod	12	15	-	V
Reset drain voltage		Vrd	12	13	14	V
Output gate voltage		Vog	-0.5	2	5	V
Output transistor ground	d voltage	VSSA	-	0	-	V
Substrate voltage		VSSD	-5	0	-	V
-	Vertical input source	VISV	-	Vrd	-	
Test point	Vertical input gate	VIGV	-8	0	-	V
	Horizontal input gate	VIGH	-8	0	-	
Vertical shift register	High	Vp1avh, Vp2avh Vp1bvh, Vp2bvh	0	3	6	v
clock voltage	Low	VP1AVL, VP2AVL VP1BVL, VP2BVL	-9	-8	-7	
Horizontal shift register clock voltage	High	Vр1анн, Vр2анн Vр1внн, Vр2внн	0	3	6	v
	Low	VP1AHL, VP2AHL VP1BHL, VP2BHL	-9	-8	-7	V
Summing gate voltage	High	Vsgh	0	3	6	V
Summing gate voltage	Low	VSGL	-9	-8	-7	v
Deach acho valta ao	High	VRGH	0	3	6	V
Reset gate voltage	Low	VRGL	-9	-8	-7	v
Transfor gata valtage	High	Vtgh	0	3	6	v
Transfer gate voltage	Low	Vtgl	-9	-8	-7	1 v

Electrical characteristics (Ta=25 °C)

Parameter	Symbol	Remark	Min.	Тур.	Max.	Unit
Signal output frequency	fc		-	2	4	MHz
Reset clock frequency	frg		-	2	4	MHz
Vertical shift register capacitance	CP1AV, CP2AV CP1BV, CP2BV		-	15000	-	pF
Horizontal shift register capacitance	Ср1ан, Ср2ан Ср1вн, Ср2вн		-	500	-	pF
Summing gate capacitance	Csg		-	15	-	pF
Reset gate capacitance	CRG		-	10	-	pF
Transfer gate capacitance	Ctg		-	500	-	pF
Transfer efficiency	CTE	*2	0.99995	0.99999	-	-
DC output level	Vout	*3	5	8	11	V
Output impedance	Zo	*3	-	500	-	Ω
Power dissipation	Р	*3 *4	-	60	-	mW

*2: Measured at half of the full well capacity. CTE is defined per pixel.

*3: VOD=15 V

*4: Power dissipation of the on-chip amplifier (each chip)

Electrical and optical characteristics (Ta=25 °C, unless otherwise noted)

Parameter		Symbol	Remark	Min.	Тур.	Max.	Unit	
Saturation out	put voltage		Vsat		-	Fw × Sv	-	V
		Vertical			600	1200	-	
Full well capac	city	Horizontal	Fw		600	1200	-	ke-
		Summing			600	1200	-]
CCD node sen	sitivity		Sv	*5	0.45	0.6	-	μV/e⁻
Dark current (MPP mode)		DS	*6	-	8	24	ke ⁻ /pixel/s	
Doodout noise		Ta=25 °C	- Nr	*7 -	90	-	e⁻rms	
Readout noise		Ta=-40 °C			-	60		120
Dynamic range		DR	*8	5000	20000	-		
X-ray response	e nonuniformity (S7	7199-01)	XRNU	*9		±10	±30	%
Photoresponse	e nonuniformity (S7	'199-01F)	PRNU	*10] -	±10	±30	70
	Point defects*11	White spots			-	-	10	
Blemish		Black spots			-	-	10]
Cluster defects		·		*12	-	-	0] -
	Column defects			*13	-	-	0]
X-ray resolution (S7199-01)		ΔR		4	6	-	Lp/mm	

*5: Vod=15 V

*6: Dark current doubles for every 5 to 7 °C.

*7: Operating frequency is 2 MHz.

*8: Dynamic range = Full well capacity / Readout noise

*9: X-ray irradiation of 60kVp, measured at half of the full well capacity.

Measuring region that is within 146.0 mm (H) \times 6.0 mm (V) (refer to dimensional outline)

$$XRNU[\%] = \frac{Fixed pattern noise (peak to peak)}{Fixed pattern noise (peak to peak)} \times 100$$

Signal

*10: Measured at one-half of the saturation output (full well capacity) using LED light (peak emission wavelength: 565 nm)

PRNU [%] = Fixed pattern noise (peak to peak) × 100

Signal

*11: White spots > 20 times of typ. dark signal (8 ke⁻/pixel/s)

Black spots > 50% reduction in response relative to adjacent pixels, measured at half of the full well capacity

*12: Continuous 2 to 9 point defects

*13: Continuous >10 point defects

Resolution (S7199-01)

Output voltage vs. X-ray response (S7199-01)

Device structure

Pixel format

		← Left I	Horizontal Direction	$n \rightarrow Right$		
Blank	Optical black	Isolation	Effective	Isolation	Optical black	Blank
0	0	0	1536	0	0	0
	Ī	$Top \gets Ve$	ertical direction \rightarrow	Bottom		
		Isolation	Effective	Isolation		
	-	0	128	0		

AMAMATSU

Timing chart (TDI operation)

Timing chart (TDI operation, 2 × 2 pixel binning)

Parameter		Symbol	Remark	Min.	Тур.	Max.	Unit
P1AV, P1BV,	Pulse width	tpwv	*14 *15	30	60	-	μs
P2AV, P2BV, TG	Rise and fall times	tprv, tpfv		200	-	-	ns
	Pulse width	tpwh		125	250	-	ns
P1AH, P1BH, P2AH, P2BH	Rise and fall times	tprh, tpfh	*15	10	-	-	ns
rzan, rzdn	Duty ratio	-		-	50	-	%
	Pulse width	tpws		125	250	-	ns
SG	Rise and fall times	tprs, tpfs		10	-	-	ns
	Duty ratio	-		-	50	-	%
RG	Pulse width	tpwr		10	50	-	ns
	Rise and fall times	tprr, tpfr		5	-	-	ns
TG-P1AH, P1BH	Overlap time	tovr		10	20	-	μs

*14: TG terminal can be short-circuited to P2AV terminal.

*15: Symmetrical clock pulses should be overlapped at 50% of maximum pulse amplitude.

Dimensional outline (unit: mm)

Pin connections

Pin no.	Symbol	Description	Remark			
A1	RG	Reset gate				
A2	RD	Reset drain				
A3	SSA	nalog ground				
A4	OS	Output transistor source				
A5	OD	Output transistor drain				
A6	OG	Output gate				
A7	SG	Summing gate				
A8	P2AH	CCD horizontal register clock A-2				
A9	P1AH	CCD horizontal register clock A-1				
A10	SSD	Digital ground				
A11	P2BH	CCD horizontal register clock B-2	Same timing as P2AH			
A12	P1BH	CCD horizontal register clock B-1	Same timing as P1AH			
A13	IGH	Test point (horizontal input gate)				
A14	ISV	Test point (vertical input source)	Shorted to RD			
A15	IGV	Test point (vertical input gate)				
A16	P1BV	CCD vertical register clock B-1	Same timing as P1AV			
A17	P2BV	CCD vertical register clock B-2	Same timing as P2AV			
A18	P1AV	CCD vertical register clock A-1				
A19	P2AV	CCD vertical register clock A-2				
A20	TG	Transfer gate				
B1	IGH	Test point (horizontal input gate)				
B2	P1BH	CCD horizontal register clock B-1	Same timing as P1AH			
B3	P2BH	CCD horizontal register clock B-2	Same timing as P2AH			
B4	SSD	Digital ground				
B5	P1AH	CCD horizontal register clock A-1				
B6	P2AH	CCD horizontal register clock A-2				
B7	SG	Summing gate				
B8	OG	Output gate				
B9	OD	Output transistor drain				
B10	OS	Output transistor source				
B11	SSA	Analog ground				
B12	RD	Reset drain				
B13	RG	Reset gate				
B14	TG	Transfer gate				
B15	P2AV	CCD vertical register clock A-2				
B16	P1AV	CCD vertical register clock A-1				
B17	P2BV	CCD vertical register clock B-2	Same timing as P2AV			
B18	P1BV	CCD vertical register clock B-1	Same timing as P1AV			
B19	IGV	Test point (vertical input gate)				
B20	ISV	Test Point (vertical input gate)	Shorted to RD			

Precautions (electrostatic countermeasures)

- Handle these sensors with bare hands or wearing cotton gloves. In addition, wear anti-static clothing or use an anti-static wrist band, in order to prevent electrostatic damage due to electrical charges from friction.
- · Avoid directly placing these sensors on a work-desk or work-bench that may carry an electrostatic charge.
- · Provide ground lines or ground connection with the work-floor, work-desk and work-bench to allow static electricity to discharge.
- · Ground the tools used to handle these sensors, such as tweezers and soldering irons.

It is not always necessary to provide all the electrostatic measures stated above. Take these measures as needed to prevent electrostatic damage to the sensor.

Notice

. This product is warranted for a period of 12 months after the date of the shipment.

The warranty is limited to replacement or repair of any defective product due to defects in workmanship or materials used in manufacture. The warranty does not cover loss or damage caused by natural disaster, misuse (including modifications and any use not complying with the environment, application, usage and storage conditions described in this datasheet), or total radiation dose over 50 Gy (incident X-ray energy: 70 kVp) even within the warranty period.

Information described in this material is current as of February, 2014.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use.

Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

HAMAMATSU

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81) 53-434-3311, Fax: (81) 53-434-5184 U.S.A.: Hamamatsu Corporation: 360 Foothill Road, P.O.Box 6910, Bridgewater, N.J. 08807-0910, U.S.A., Telephone: (1) 908-231-0960, Fax: (1) 908-231-1218 Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerstr. 10, D-82211 Hersching am Ammersee, Germany, Telephone: (49) 8152-375-0, Fax: (49) 8152-265-8 France: Hamamatsu Photonics France S.A.R.L.: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: 33-(1) 69 53 71 00, Fax: 33-(1) 69 53 71 10 United Kingdom: Hamamatsu Photonics UK Limited: 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom, Telephone: (44) 1707-294888, Fax: (44) 1707-325777 North Europe: Hamamatsu Photonics Italia S.R.L.: Strada della Moia, 1 int. 6, 20020 Arese, (Milano), Italy, Telephone: (39) 02-935-81-733, Fax: (39) 02-935-81-731 China: Hamamatsu Chotonics (China) Co., Ltd.: 1201 Tower B, Jiaming Center, No.27 Dongsanhuan Beilu, Chaoyang District, Beijing 100020, China, Telephone: (66) 10-6586-6006, Fax: (86) 10-6586-2866

Cat. No. KMPD1077E12 Feb. 2014 DN