突破生物发光显微技术的极限

2025年8月19日发布

生物发光显微技术的独特优势促使研究人员挑战传统的荧光方法。在活体细胞与动物的检测和成像中,生物发光报告基因技术被证明是一种具有潜力的方法,在神经科学研究领域尤其如此。

Michael Krieg博士及其协作团队(来自位于西班牙卡斯特尔德费尔斯的 Institut de Ciencies Fotòniques (ICFO) ),揭示了生物发光显微技术在观测秀丽隐杆线虫和其他生物学模式生物方面的优势和极限突破,论证了快速细胞动力学的体积成像。

 

秀丽隐杆线虫(体长1 mm)因其身体结构固定、体表透明且神经系统特征清晰,在过去60年里一直被用作模型。© 2022年,Luis Felipe Morales-Curiel、Michael Krieg等人版权所有。

 

 

生物发光技术的优势与挑战

在生物发光显微镜中,信号是由酶(荧光素酶)与其底物(荧光素)通过化学反应产生的。生物发光显微镜的一般方法和信息内容与荧光显微镜相似。但生物发光的一个显著优势在于无需使用激发光源。这一优势提高了信号的特异性,因为内源性自发荧光不会产生任何背景信号,从而潜在隐藏正在研究的特定信号。

 

另一优势在于减轻了样本应激——如应用示例1所示,荧光显微镜中的高强度激发光可能引发样本产生有害副反应。

应用示例1:荧光技术与生物发光技术在引发秀丽隐杆线虫应激后的对比1

利用 mNeonGreen-NanoLantern(作为应激报告基因)融合 DAF-16测量秀丽隐杆线虫的细胞应激反应。无应激时,DAF-16位于细胞质中;而受到应激后,DAF-16大多位于细胞核中。实验使用了 mNeonGreen 荧光技术(图b)和 mNeonGreen-Nanolantern 生物发光融合技术(图c)分别进行。图d显示了细胞核与细胞质的信号比率。热休克反应后,荧光和生物发光技术均能检测到应激反应,但生物发光检测的效果更为突出,这可能是因为未出现非特异性自发荧光。有趣的是,对照实验(如b和c中的插图所示)表明荧光成像的应激反应,这很可能是由暴露的激发辐射造成的。

荧光标记物还会随着时间的推移而褪色,从而限制了对活体样本的长期观测。使用生物发光显微技术可以有效减轻这些影响,因为该技术通过化学过程(而非荧光涉及的光物理过程)获取信号生成所需的能量。

 

然而,生物发光技术的一个主要缺点是其信号强度相当低,导致显微成像需要的曝光时间较长且图像信噪比较低,从而限制了其在动态过程中的适用性,而动态过程在观测活体标本时却具有很大的应用价值。

实验设置

Michael Krieg博士在自己的实验中,带领团队优化了生物发光实验流程的各个环节。他们利用光子极度匮乏的样本来挑战这些限制,力求以高时间分辨率提供高信噪比 (SNR) 成像。为了实现这一目标,他使用比传统荧光素酶亮度更高、光谱特性更多样的Nanolantern作为染料。由于普通宽场显微镜无法采集任何信号,他们研制了一台名为“LowLiteScope”的高光效显微镜。

 

此外,由于可用信号弱,生成的图像仍然难以检查,因此应用内容感知图像恢复 (CARE) 技术改善这些图像,从而在毫秒级曝光时间内提供清晰、高对比度的图像。

 

Michael Krieg博士和他的研究生Luis Felipe Morales-Curiel正在使用高光效率显微镜“LowLiteScope”

采用定量CMOS技术成像

为了确保最高效的检测,采用定量CMOS (qCMOS) 相机ORCA-Quest,借助可用的光子提供最佳图像。该相机读出噪声极低 (0.27 e-),且量子效率很高,可实现几乎低至单光子水平的最佳信噪比。

除了原始灵敏度之外,ORCA-Quest在上文介绍的生物发光设置中的另一个优势在于其几何设计:该相机与LowLiteScope的光学元件结合,提供的4.6 μm 像素间距在光采集效率和空间分辨率之间实现了完美的平衡。

 

由于ORCA-Quest的像素数高达940万像素,因此无需就视场范围做出妥协。上述像素间距和像素数也有利于该方法的另一项改进:为了提高三维采集速度,该实验还纳入了光场显微技术。ORCA-Quest的小像素尺寸和高像素数允许将三维光场投射到二维相机传感器上,从而能够利用生物发光技术对所有秀丽隐杆线虫进行快速三维成像。传统光场成像需要对三维物体进行复杂的计算重建,可能需要长达30分钟的时间。为了加快这一过程,该实验采用神经网络将三维重建的时间缩短至100 ms。采用该方案,仅需5 s曝光时间即可获得令人满意的成像效果。为了进一步减少最短曝光时间以便对三维样本动态进行成像,该实验在重建之前应用了CARE技术。此举将可实现的曝光时间进一步缩短至二十分之一,同时仍保持可接受的曝光时间。下面的应用示例2显示了以每秒5个体积的速度实现的生物发光 AI 重建光场显微成像的示例。

应用示例2:自由移动的秀丽隐杆线虫肌肉中生物发光钙离子报告基因的原始光场图像

结果和未来用途

Luis Felipe Morales-Curiel和Michael Krieg博士现已将生物发光显微技术作为一项多功能方法加入生物学家工具箱。与荧光技术相比,生物发光技术具有样本应激更小、特异性更高的优势。通过优化整个成像流程,克服了生物发光技术常见的信号产量低以及由此导致的曝光时间长的缺点。优化举措包括使用最亮的生物发光染料;使用针对低光灵敏度优化的仪器记录数据;最后是使用基于现代机器学习的方法处理数据。

 

在Krieg lab,这种生物发光技术框架将用于进一步研究秀丽隐杆线虫、其他模式生物以及干细胞衍生类器官的力生物学和神经科学。在最近的一项研究中2,该框架已被用于可视化钙触发光子发射器在建立基于光子的突触通讯通路方面的性能。

About Dr. Michael Krieg

Dr. Michael Krieg was a Postdoctoral Research Fellow in the Department of Molecular and Cellular Physiology at Stanford University. In the lab of Dr. Miriam Goodman, Michael investigated basic mechanotransduction pathways in neurons of the model organism, C. elegans. Michael earned his Ph.D. in Developmental Biology/Biophysics from the Technical University Dresden. Currently, Dr. Krieg is the Group Leader of the Neurophotonics and Mechanical Systems Biology Research Group at the Institute of Photonic Sciences, ICFO, Spain. 

来源

相关产品

ORCA-Quest 2是一款新的qCMOS相机,也是ORCA-Quest的后续产品,具有多项深化进步,例如在极低噪声扫描模式下读出速度更快,紫外区域灵敏度更高。

其他案例研究

请联系我们获取更多信息。

  • 资料索取
  • 价格咨询
  • 产品货期
  • 产品定制
  • 演示
  • 技术支持
  • 其他

联系我们