荧光寿命测量

光致发光寿命的原理

光致发光 (PL) 寿命是指分子(如荧光染料)在光激发后通过发射光子回到基态所需的时间。以简单术语定义则为激发后 PL 强度立即下降到初始值的约37%所需的时间(图1)。PL 寿命从皮秒到毫秒不等,具体取决于发光材料的类型。例如,有机电致发光器件中使用的发光材料需兼备高发光效率与短荧光寿命,方可实现高速响应。

图1:荧光寿命的定义

什么是 TRPL 测量

时间分辨光致发光 (TRPL) 测量是一种测量样品在受极短光脉冲激发后所发射的光致发光(如荧光、磷光)强度随时间变化的方法。TRPL 测量的一些有趣例子包括有机和无机化合物及涉及带间再结合的半导体的荧光和磷光寿命。

TRFL/荧光寿命测量方法与原理

测量 TRPL 的方法有很多种,其中两种广为人知的技术是时间相关单光子计数 (TCSPC) 与条纹法。

时间相关单光子计数 (TCSPC) 法

TCSPC 是一种以时间-振幅转换器 (TAC) 为核心器件的荧光寿命测量方法。采用 TCSPC 法的荧光寿命测量系统一般由激发脉冲光源、样品架、探测器、数据分析系统组成。光电倍增管主要用作探测器。TAC 就像高速秒表,当激发光发射时开始计时,当检测到样品的荧光光子时停止计时。然后,其将起点和终点之间的时间差作为电压输出。接着,将 TAC 的电压输出经多通道分析仪 (MCA) 转换为时间信息(图2a)。历经多次启停循环,再将所得数据绘制成计数与时间的直方图(图2b),进而得到荧光衰减曲线,从而确定荧光寿命(图3)。

 

近年来,常以时间数字转换器 (TDC) 取代 TAC。如今使用 TDC 的主要原因是为了缩小测量仪器的尺寸,TDC 将时间-振幅的转换与幅度-数字的转换相结合,从而减小了组件尺寸,同时提高了转换效率。

滨松集团的紧凑型荧光寿命测量系统 Quantaurus-Tau 部署了 TDC 技术。

图2(a):TCSPC 法的原理

图2(b):TCSPC 法的原理

图3:输出荧光寿命测量数据示例

本视频将介绍 Quantaurus-Tau 的操作方法。

条纹相机法

条纹相机是一种能捕获极短时间内发生的光相关现象的设备。条纹相机主要由光阴极面、加速电极、扫描电极、微通道板 (MCP) 和荧光屏组成。进入条纹相机的光子首先在光阴极面转换为电子,然后通过加速电极加速。当加速的电子通过扫描电极时,随时间变化的电压施加到电极上,使电子上下偏转。随后,偏转的电子经 MCP 增益后倍增几个数量级,并在撞击荧光屏时转换回光。荧光屏的荧光产生条纹图像,该图像被读出相机捕获,其中横轴代表空间,纵轴代表时间(图5)。条纹图像的辉度与各光子的强度成正比。

 

此外,通过在条纹相机前加装光谱仪,即可获得横轴代表波长、纵轴代表时间的条纹图像。这就是时间分辨发射光谱 (TRES),其集时间分辨测量与光谱分析于一体,可研究光致发光的时间和波长特性。

 

滨松集团通用条纹相机具有小于800飞秒 (fs) 的极高时间分辨率。

图4:条纹相机工作原理图

图5:条纹图像示例

本视频将介绍使用条纹相机进行测量的示例与原理。

发光材料的荧光寿命测量

蓝色有机LED材料的热活化延迟荧光

第三代OLED材料因热活化延迟荧光 (TADF) 而备受关注,科研界正对其展开深度研究,旨在同步提升效率与降低成本。为达到所需高效率,分子设计是最小化最低单线态激发态 (S1) 与最低三线态激发态 (T1) 之间的热可达能隙  ΔEst 的关键。这种方法有利于收集 S1 和 T1 激发态的激子,从而提高 OLED 材料的效率。

 

本文利用 Quantarus Tau 荧光寿命光谱仪与条纹相机系统研究了1-3 µs 之间 TADF 的小能隙 ΔEst。这些系统的模块化还支持以纳秒为测量单位来表征 OLED 薄膜的短荧光组件。

Data courtesy of Prof. Chihaya Adachi, Hajime Nakanotani Center for Organic Photonics and Electronics Research, Kyushu Univ.

Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka and C. Adachi, Nature photonics. 8, 326 (2014)

 

所用系统/仪器:Quantaurus-Tau

具有光谱-时间分辨功能的二维钙钛矿研究专用条纹相机系统

凭借光-物质强耦合性、化学多功能性以及对广泛光电应用的适用性,二维卤化物钙钛矿作为一种非常有趣的材料类别出现。此外,二维卤化物钙钛矿中的电子、光学和振动激发之间存在强烈的相互作用,故其对基础调查与未来技术领域均展现出一定的研究价值。尽管其蕴含着独特的潜力,但其电掺杂控制难题仍是制约其发展的核心挑战。这个例子使用瞬态显微镜来研究基于二维钙钛矿的栅极可调装置,结合时间分辨测量与光谱和空间分辨分析来监测自由电荷载体的可逆电注入。后者通过全光学读出实现了n型和p型掺杂下的目标,展现出电可调的光学响应特性。滨松集团条纹相机凭借其高灵敏度与时间分辨力,实现了对二维混合钙钛矿中带电激子复合物的再结合动力学过程及其空间传输行为的直接观测。这为混合无机-有机半导体的电可调光激发于纳米级光电器件中的应用开启了全新机遇。

温度和空间依赖型光致发光

温度依赖型条纹相机图像捕获了三激子发射范围内的光致发光 (PL),直观揭示了高温条件下光谱展宽随时间增加的过程。白色虚线为20K与50K 的视觉参考。

时间和光谱分辨型 PL 发射

a. 5K下n掺杂下PL发射的条纹相机图像。

b. 从 (a) 中提取的激发后不同时间间隔的PL光谱。

Data courtesy of Prof. Alexey Chernikov, his group, and their collaborators (Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence, TU Dresden).

Jonas D. Ziegler, Yeongsu Cho, Sophia Terres, Matan Menahem, Takashi Taniguchi, Kenji Watanabe, Omer Yaffe, Timothy C. Berkelbach, Alexey Chernikov, Advanced Materials 2023, 35, 2210221

特色产品与系统/仪器

根据所需时间分辨率,我司产品阵容中有两大类荧光寿命测量系统。

紧凑型荧光寿命测量系统可测量从亚纳秒到毫秒的荧光寿命。其操作简单,可提供高精度的荧光寿命测量。

荧光寿命测量系统/仪器采用二维光子计数法测量荧光寿命,兼具高灵敏度与 800 飞秒级高时间分辨率。其可同时测量多个波长的荧光寿命。

案例研究

为评估Center for Organic Photonics and Electronics Research (OPERA), Kyushu University 正在研发的有机光电材料和器件,需用到各种测量方法,如光致发光 (PL) 量子产率测量和荧光寿命测量。为进行此类评估,我们推出了Quantaurus系列与条纹相机。

我们采访了Prof. Chihaya Adachi, Director of the Center与 Assoc. Prof. Hajime Nakanotani主题为绝对光致发光量子产率测量方法的确立、我们的Quantaurus系列对其研究的影响以及其对未来研究的展望。

其他测量方法

请联系我们获取更多信息。

  • 资料索取
  • 价格咨询
  • 产品货期
  • 演示
  • 技术支持
  • 其他

联系我们