微型光谱仪

分光测光是如何在微型光谱仪中进行测量的?

入射在微型光谱仪上的光通过光栅在光谱上分离,并按波长一维排列。然后入射光进入图像传感器,并通过读取图像传感器上每个入射光位置处输出的电信号来获得波长信息。图像传感器由光电变换元件阵列和用于将输出电荷传输到外部设备的电路组成。我们将只包含这些组件的微型光谱仪称为“探头型”。

我们还提供称为“模块型”的微型光谱仪,由一个探头型微型光谱仪、一个驱动电路以及一个用于连接到 PC 的接口电路组成。对于探头型微型光谱仪,我们提供用于连接到 PC 的评价电路(单独出售)。

微型光谱仪中集成了哪些类型的图像传感器?


根据每种类型的微型光谱仪,使用具有不同光谱响应范围和灵敏度等特征的线阵图像传感器。

 

微型光谱仪(示例) 类型 图像传感器 灵敏度波长范围 特点
TG 系列
(C9404CA 等)
TM 系列
(C10082CA 等)
模块类型 薄型背照式 CCD 图像传感器 200 至 1100 nm 高灵敏度
TM 系列
(C10082MD 等)
模块类型 CMOS 图像传感器 200 至 1100 nm 宽动态范围
TM 系列
(C10082MD 等)
RC 系列
MS 系列
微型光谱仪
探头型 CMOS 图像传感器 200 至 1100 nm 宽动态范围
TG 系列 (C11482GA) 模块类型 非冷却型 InGaAs 图像传感器 900 至 1700 nm 不需要制冷电源。
TG 系列
(C9914GB 等)
模块类型 电子
制冷型
InGaAs 图像传感器
900 至 2550 nm 低噪声

 

积分时间为多长?

积分时间是光输入在图像传感器中所生成电荷的积累时间。积累的电荷量与此积分时间成正比,因此如果入射光量较低,可以通过使用更长的积分时间来获得足够的电荷量。但请注意,图像传感器暗输出也会与积分时间成比例增加。

对于积分时间的设置,我应该注意哪些事项?

积分时间可以用 1 μs 或 1 ms 的步长进行设置。(探头型微型光谱仪的积分时间由图像传感器驱动信号的时机设置。)

微型光谱仪是如何驱动的?

模块型微型光谱仪具有一个 USB 接口,因此可以使用随附的 USB 电缆连接到 Windows PC 来驱动。一些微型光谱仪仅支持 USB 总线供电,而另一些微型光谱仪则需要外部电源。使用需要外部电源的微型光谱仪时,请使用产品随附的电源连接器。

 

仅 USB 总线供电 C10082MD、C10083MD、C11697MB、C11482GA、C11007MA、C11008MA、C13053MA
USB 总线供电 + 外部电源 C10082CA、C10082CAH、C10083CA、C10083CAH、C9404CA、C9404CAH
C9913GC、C9914GB、C11118GA

 

注 1:要操作探头型微型光谱仪,请准备一个符合设备安装条件的驱动电路。我们提供评价电路(单独出售),可用于简单评估探头型微型光谱仪的特性。

注 2:USB 总线供电预防措施
USB 总线供电具有消耗电流上限。因此,使用通过连接端口供电的总线供电型集线器时,或与其他 USB 总线供电设备一起使用时,或连接到多个微型光谱仪时,需要小心。
在某些 PC(特别是笔记本电脑)上,根据具体设置,当 PC 切换到省电模式时,USB 总线供电功能可能会关闭。从省电模式恢复时,也可能会发生与微型光谱仪的通信问题。因此应禁用省电模式。

是否存在可用于操作微型光谱仪的软件?

微型光谱仪(探头型微型光谱仪除外)随附了评估软件。
此评估软件包含进行基本测量所需的功能(设置测量条件、采集和存储数据以及显示图形等)。

运行微型光谱仪评估软件需要哪些系统?

微型光谱仪随附评估软件的运行已通过如下所示系统验证。我们不保证能在其他系统或环境中运行。

 

操作系统 Microsoft Windows 7 Ultimate SP1(32/64 位)
显示器 XGA (1024 × 768) 或更高分辨率

 

建议使用配备高性能 CPU 和内存的 PC。

 

除基本功能外,评估软件还能做什么?

评估软件可以将测量结果存储为 CSV 文件(可用按钮选择波长或像素)。该文件可以加载到其他软件上,以便进一步处理。该评估软件还提供了可与 Visual C++、Visual Basic 等软件一起使用的 DLL,允许用户开发自己的测量程序。但探头型微型光谱仪评价电路的 DLL 功能规格不提供给用户。

我需要将图像传感器的每个像素数据转换为波长数据。该如何做?

每个图像传感器像素与波长之间的关系可以通过使用下面的 5 阶近似表达式来计算。

波长 [nm] = a0 + a1pix1 + a2pix2 + a3pix3 + a4pix4 + a5pix5
a0~a5:检查成绩单中列出的波长换算系数
这些波长换算系数存储在微型光谱仪内部(探头型微型光谱仪除外)。
pix:图像传感器的任何像素号(1 到最后一个像素)

评估软件可以使用这些系数来显示转换为波长后的数据。
请注意,与光谱线的已知波长相比,用此近似表达式计算的值可能略有差异。

微型光谱仪 AD 转换值是否可以转换为光量?

不可能,因为微型光谱仪没有用于将 AD 转换值转换为光量的系数。

是否还提供了用户手册和技术资料?

在 PC 中安装评估软件时,用户手册和技术资料也会存储在 PC 中。
要查看这些项目,请从 Windows 开始菜单中选择:
[Program]→[Hamamatsuminispectrometer]→[Document]

是否提供用于连接到微型光谱仪的光纤?

可提供以下光纤(单独出售)。

*A16962-01:适用于紫外光到可见光,芯径 600 μm,长度 1.5 m,两端带有 SMA905D 连接器
*A16962-02:适用于紫外光到可见光,芯径 800 μm,长度 1.5 m,两端带有 SMA905D 连接器
*A16963-01:适用于可见光到近红外,芯径 600 μm,长度 1.5 m,两端带有 SMA905D 连接器
*A16963-02:适用于可见光到近红外,芯径 800 μm,长度 1.5 m,两端带有 SMA905D 连接器

备注:MS 系列和微型光谱仪不需要光纤,因为它们设计用于测量通过空气入射的光。

需要间隔多久进行一次波长校准? 该如何做?

滨松微型光谱仪没有活动部件,因此具有出色的稳定性。我们认为在室内区域等正常环境中使用时,无需进行波长校准。您可以继续使用发货时随附的波长换算系数。
可以使用发射已知光谱线的校准灯来检查波长精度。要重新获取波长换算系数,我们建议使用高精度单色仪。

微型光谱仪中集成了哪种类型的光栅。

我们的微型光谱仪使用传输型光栅或反射型光栅。

狭缝尺寸会如何影响检测?

在微型光谱仪中,狭缝尺寸主要与分辨率和吞吐量有关。狭缝尺寸越小,特别是宽度方向的狭缝越小,分辨率将会越高。但狭缝变小会降低要测量的光量,并且还会导致微型光谱仪的吞吐量下降。设置微型光谱仪的狭缝尺寸时需要综合考虑这些因素。

带 FC 连接器的光纤是否可以连接到微型光谱仪?

我们的微型光谱仪(用于光纤连接)配有 SMA 连接器。带 FC 连接器的光纤不能连接到我们的微型光谱仪。

备注:MS 系列和微型光谱仪不需要光纤,因为它们用于测量通过空气入射的光。

将市售光纤连接到微型光谱仪时,我应该注意什么?

使用带有 SMA 连接器、数值孔径为 0.22 并具有大芯径(建议芯径 500 μm 或以上)的光纤。芯径较小的光纤有时会影响测量精度。要减少噪声,请选择具有不受外部光影响的护套的光纤。如果测量紫外光,则选择日光耐受型光纤以防止透射率损失。

如何定义光谱分辨率?

定义光谱分辨率有两种方法。一种是按 DIN 标准瑞立条件定义分辨率。此处用一个数值来定义微型光谱仪在具有相同强度的相邻波峰之间可以区分的波长差的大小。根据这种方法,两个波峰之间的波谷值必须在峰值的 81% 或更低范围内可测量。另一种用于定义光谱分辨率的更实用方法,是通过 FWHM(半峰全宽)找到光谱宽度。这种方法可直接定义光谱峰值强度 50% 点处的光谱扩展。由半宽度 (FWHM) 方法定义的分辨率已知约为用瑞立条件定义的分辨率值的 80%。微型光谱仪的光谱分辨率用更实用的半宽度 (FWHM) 方法定义。

微型光谱仪的波长再现性有多大?

由于微型光谱仪没有机械活动部件,因此可以轻松保持其光学精度,从而提供较高的波长再现性。例如,C9404CA 的波长再现性为 ±0.1 nm,C9406GC 的波长再现性为 ±0.2 nm。TG 系列和 TM 系列微型光谱仪具有小巧强大的光学系统,可将温度对波长的影响降至极低水平。因此上述型号可以达到 0.02 nm/°C 的规格。

杂散光量是如何定义的?

定义杂散光量的方法有两种。一种方法是利用透射通过长通滤波器(允许通过特定的波长以作为测量光)的白光。在这种情况下,杂散光定义为透射波长范围内的透射率与阻断波长范围内的透射率之比。这一定义允许测量宽波长范围内的杂散光的影响,因此是一种适合荧光测定等实际用途的评估方法。但用户应注意,用作参考光的白光的强度分布将对测量值产生影响。另一种方法是利用窄波长范围内的参考光,例如从单色仪或光谱线阵灯发射的光。在这种情况下,定义杂散光的一个例子是,使用参考光量以及在窄波长范围内的参考光的某个峰值波长偏移位置输出的不必要光量,用下面的公式得出。如果通过窄波长范围内的参考光来评估杂散光,那么测量条件非常简单,因此这种方法在进行定量评估时具有良好的再现性。


SL = 10 × (log IM / IR)
SL:通过窄波长范围内的参考光的杂散光
IM:从参考光的峰值波长偏移位置输出的不必要光量
IR:参考光量