ORCA®-Fire 数字 CMOS 相机
ORCA-Fire 智能地集成了高性能、薄型背照式科学 CMOS (sCMOS) 相机的所有基本要素。该相机的卓越性能源于滨松对低噪声和高量子效率 sCMOS 技术的不懈追求。借助 ORCA-Fire,在实现高灵敏度的同时,还可获得出色的分辨率和超快的速度。当科研需要高吞吐量,但样品只能提供几个光子时,ORCA-Fire 将大放异彩。
ORCA-Fire 会激发您的下一个发现吗?
ORCA是日本滨松光子学株式会社,及其全球子公司(欧洲联盟、日本、英国、美国)注册使用的商标。
1.0 个电子 rms (115 帧/秒)
86% @460 nm(背照式 CMOS)
4432 (H) × 2368 (V)(像素尺寸 4.6 μm)
115 帧/秒(@4432(H)×2368(V) 1050 万像素)
20.4 mm × 10.9 mm(对角线 23.114 mm)
1:20 000(最大阱容 20 000 个电子)
低放大率成像 (<40×) 具有大视野的优势,这对于高通量应用至关重要。要获取具有最大信息量的低放大率图像,成像系统必须通过将像素尺寸与奈奎斯特级或更高的采样率相匹配来实现高分辨率。 ORCA-Fire 的像素尺寸非常适合大多数 40 倍或更低倍率的物镜(见下图)。 ORCA-Fire 具有高空间分辨率、大像素阵列和快速读出速度,像素吞吐量比最快的 4.2 MP 6.5 μm sCMOS 相机还高出 2.9 倍。
放大率 | NA | δ (μm) | Δ (μm) | 合适的像素尺寸 (μm) |
---|---|---|---|---|
4 | 0.16 | 2.10 | 8.4 | 4.2 |
10 | 0.4 | 0.84 | 8.4 | 4.2 |
20 | 0.8 | 0.42 | 8.4 | 4.2 |
40 | 1.4 | 0.24 | 9.6 | 4.8 |
40 | 0.95 | 0.35 | 14.1 | 7.1 |
60 | 1.42 | 0.24 | 14.2 | 7.1 |
100 | 1.5 | 0.22 | 22.4 | 11.2 |
* 瑞利准则 (δ) = 0.61λ / NA
* 波长 (λ) = 550 nm
* Δ = δ × 物镜放大率
ORCA-Fire 采用先进的薄型背照式技术与微透镜,以实现高量子效率。结合 1.0 e- rms 的读出噪声,ORCA-Fire 延续了滨松提供的相机在所有光量下都具有最高灵敏度的趋势。
高 QE 是高灵敏度成像的基本预期和关键组成部分。 通过薄型背照式传感器实现高 QE 似乎很简单,但薄型背照式传感器设计中存在可能影响图像质量的微妙之处。 在传统的背照式探测器中,由于硅的有源区域内的像素分离不佳,像素之间会出现串扰,从而影响分辨率,而与像素尺寸无关。 我们的工程师在 ORCA-Fire 中实现了深度沟槽像素结构,可防止像素串扰并提高分辨率。
读出模式 | 区域读出模式 | |||
---|---|---|---|---|
扫描模式 | 标准扫描 | |||
X(像素) | Y(像素) | CoaXPress | USB3.1 Gen I (16 位) |
USB3.1 Gen I (8 位) |
4432 | 2368 | 115 | 15.7 | 31.5 |
4432 | 2304 | 118 | 16.2 | 32.4 |
4432 | 2048 | 132 | 18.2 | 36.5 |
4432 | 1024 | 264 | 36.4 | 72.8 |
4432 | 512 | 524 | 72.3 | 144 |
4432 | 256 | 1020 | 143 | 286 |
4432 | 128 | 1980 | 279 | 558 |
4432 | 8 | 15 200 | 2360 | 5260 |
4432 | 4 | 19 500 | 3960 | 7200 |
读出模式 | 区域读出模式 | |||
---|---|---|---|---|
扫描模式 | 标准扫描 | |||
X(像素) | Y(像素) | CoaXPress | USB3.1 Gen I (16 位) |
USB3.1 Gen I (8 位) |
2216 | 1184 | 115 | 63.1 | 115 |
2216 | 1152 | 118 | 64.9 | 118 |
2216 | 1024 | 132 | 73 | 132 |
2216 | 512 | 264 | 145 | 264 |
2216 | 256 | 524 | 289 | 524 |
2216 | 128 | 1020 | 572 | 1020 |
2216 | 64 | 1980 | 1110 | 1980 |
2216 | 4 | 15 200 | 10 500 | 15 200 |
2216 | 2 | 19 500 | 13 600 | 19 500 |
ORCA-Fire 具有 4432 (H) × 2368 (V) 个像素,可有效利用 22 mm 显微镜视野。
研究人员日益转向荧光光片显微镜来研究活细胞和生物体中的生物过程,并捕获透明组织的惊人的 3D 分辨率图像。 光片显微镜有许多种类,但通常使用“光片”正交照射样品。 然后针对整个样品扫描此光片,获得可以重新组合成完整 3D 渲染的光学剖面图像。ORCA-Fire 采用滨松的专利光片读出模式。 在此模式下,光片与传感器的读出同步,从而减少散射光的影响,并有效提高图像质量和信噪比。
读出模式 | 光片读出模式 | |||
---|---|---|---|---|
扫描模式 | 标准扫描 | |||
X(像素) | Y(像素) | CoaXPress | USB3.1 Gen I (16 位) |
USB3.1 Gen I (8 位) |
4432 | 2368 | 114 | 15.7 | 31.5 |
4432 | 2304 | 117 | 16.2 | 32.4 |
4432 | 2048 | 132 | 18.2 | 36.5 |
4432 | 1024 | 263 | 36.4 | 72.8 |
4432 | 512 | 518 | 72.3 | 144 |
4432 | 256 | 1000 | 143 | 286 |
4432 | 128 | 1900 | 279 | 558 |
4432 | 8 | 11 400 | 2630 | 5260 |
4432 | 4 | 13 600 | 3690 | 7200 |
有效像素数 (H)×(V) | 读出速度(帧/秒) | ||
---|---|---|---|
ORCA-Fire (CoaXPress) |
ORCA-Fusion |
ORCA-Flash4.0 V3 |
|
4432 × 2368 | 114 | - | - |
2304 × 2304 | 117 | 88.9 | - |
2048 × 2048 | 132 | 100 | 49 |
1024 × 1024 | 263 | 199 | 99 |
512 × 512 | 518 | 396 | 196 |
256 × 256 | 1000 | 784 | 384 |
128 × 128 | 1900 | 1540 | 738 |
接口:CoaXPress/Camera Link
图像捕获模式:内部同步模式
在光片读出模式下,ORCA-Fire 每秒提供的像素数比最快的低噪声 sCMOS 相机还 高出 2.5 倍 。
在 ORCA-Fire 中,光片读出有四种不同的操作模式:前向、后向、双向和反向双向。在前向模式下,读出从传感器的顶部开始,一直进行到底部。在后向模式下,读出从底部开始,在顶部结束。双向模式在开始的第一帧采用前向读出,然后在下一帧切换到后向读出,依此类推,以交替的方式逐帧继续。顾名思义,反向双向模式从底部向顶部开始,第一帧采用后向读出,然后在下一帧切换到从顶部到底部的读出方式,依此类推。两种双向模式均已实施,以避免在下一帧需要延迟时间才能将光片返回到传感器的顶部或底部。
随着 ORCA-Fire 的推出,用户现在能够以每秒 115 帧的速度将 1000 万像素的图像流式传输到他们的计算机。通过使用 ORCA-Fire PC 建议列出的指南,可以满足计算机对高数据率的建议。
产品编号 | C16240-20UP |
---|---|
成像设备 | 科学 CMOS 图像传感器 |
有效像素数 | 4432 (H)×2368 (V) |
像素尺寸 | 4.6 μm×4.6 μm |
有效面积 | 20.387 mm×10.892 mm |
最大阱容 | 20 000 个电子(典型值) |
读出速度*1 | 全分辨率,CoaXPress:115 帧/秒 全分辨率,USB 3.1:15.7 帧/秒 垂直 4 线,CoaXPress:19 500 帧/秒 垂直 4 线,USB 3.1:3690 帧/秒 |
读出噪声 | 1.0 个电子 (rms),0.9 个电子(中位数) |
量子效率 | 86%(峰值 QE)(典型值) |
曝光时间 | 7.309 μs 至 10 s(7.309 μs 步长) |
冷却方法 | 珀耳帖制冷 |
冷却温度 | 强制风冷(环境温度: +25 ̊C)+ 20°C |
暗电流 | 0.6 个电子/像素/秒(典型值) |
动态范围 *2 | 20 000:1 (rms),22 000 : 1(中位数) |
传感器模式 | 区域读出,光片读出 |
外部触发功能 | 区域读出模式:边缘触发、全局复位边缘触发、电平触发、全局复位电平触发、同步读出触发、启动触发 光片读出模式:边缘触发、启动触发 |
外部触发信号 | 外部输入 (SMA) |
外部触发电平 | TTL/3.3 V LVCMOS 电平 |
外部触发延迟功能 | 0 μs 至 10 s(1 μs 步长) |
外部输出信号 | 全局曝光定时输出、任意行曝光定时输出、触发就绪输出、可编程定时输出、高输出、低输出 |
外部输出电平 | 3.3 V LVCMOS 电平 |
接口 | CoaXPress (Quad CXP-6) / USB 3.1 Gen 1 |
AD 转换器 | 16 位、8 位 |
透镜接口 | C 型接口 |
电源 | AC 100 V 至交流 240 V,50 Hz/60 Hz,2.5 A |
用电功耗 | 100 VA |
操作环境温度 | 0 ̊C 至 +40 ̊C |
存储环境温度 | -10 ℃ 到 +50 ℃ |
操作环境湿度 | 30% 到 80% 或更低(无雾气现象) |
存储环境湿度 | 90% 或更低(无雾气现象) |
※1 使用 DCAM-API 的帧捆绑函数
※2 根据最大阱容和读出噪声之比计算
It looks like you're in the . If this is not your location, please select the correct region or country below.
You're headed to Hamamatsu Photonics website for (Chinese). If you want to view an other country's site, the optimized information will be provided by selecting options below.
In order to use this website comfortably, we use cookies. For cookie details please see our cookie policy.
This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in this cookie policy. By closing the cookie warning banner, scrolling the page, clicking a link or continuing to browse otherwise, you agree to the use of cookies.
Hamamatsu uses cookies in order to enhance your experience on our website and ensure that our website functions.
You can visit this page at any time to learn more about cookies, get the most up to date information on how we use cookies and manage your cookie settings. We will not use cookies for any purpose other than the ones stated, but please note that we reserve the right to update our cookies.
For modern websites to work according to visitor’s expectations, they need to collect certain basic information about visitors. To do this, a site will create small text files which are placed on visitor’s devices (computer or mobile) - these files are known as cookies when you access a website. Cookies are used in order to make websites function and work efficiently. Cookies are uniquely assigned to each visitor and can only be read by a web server in the domain that issued the cookie to the visitor. Cookies cannot be used to run programs or deliver viruses to a visitor’s device.
Cookies do various jobs which make the visitor’s experience of the internet much smoother and more interactive. For instance, cookies are used to remember the visitor’s preferences on sites they visit often, to remember language preference and to help navigate between pages more efficiently. Much, though not all, of the data collected is anonymous, though some of it is designed to detect browsing patterns and approximate geographical location to improve the visitor experience.
Certain type of cookies may require the data subject’s consent before storing them on the computer.
This website uses two types of cookies:
This website uses cookies for following purposes:
Cookies help us help you. Through the use of cookies, we learn what is important to our visitors and we develop and enhance website content and functionality to support your experience. Much of our website can be accessed if cookies are disabled, however certain website functions may not work. And, we believe your current and future visits will be enhanced if cookies are enabled.
There are two ways to manage cookie preferences.
If you don’t want to receive cookies, you can modify your browser so that it notifies you when cookies are sent to it or you can refuse cookies altogether. You can also delete cookies that have already been set.
If you wish to restrict or block web browser cookies which are set on your device then you can do this through your browser settings; the Help function within your browser should tell you how. Alternatively, you may wish to visit www.aboutcookies.org, which contains comprehensive information on how to do this on a wide variety of desktop browsers.
Occasionally, we may use internet tags (also known as action tags, single-pixel GIFs, clear GIFs, invisible GIFs and 1-by-1 GIFs) at this site and may deploy these tags/cookies through a third-party advertising partner or a web analytical service partner which may be located and store the respective information (including your IP-address) in a foreign country. These tags/cookies are placed on both online advertisements that bring users to this site and on different pages of this site. We use this technology to measure the visitors' responses to our sites and the effectiveness of our advertising campaigns (including how many times a page is opened and which information is consulted) as well as to evaluate your use of this website. The third-party partner or the web analytical service partner may be able to collect data about visitors to our and other sites because of these internet tags/cookies, may compose reports regarding the website’s activity for us and may provide further services which are related to the use of the website and the internet. They may provide such information to other parties if there is a legal requirement that they do so, or if they hire the other parties to process information on their behalf.
If you would like more information about web tags and cookies associated with on-line advertising or to opt-out of third-party collection of this information, please visit the Network Advertising Initiative website http://www.networkadvertising.org.
We use third-party cookies (such as Google Analytics) to track visitors on our website, to get reports about how visitors use the website and to inform, optimize and serve ads based on someone's past visits to our website.
You may opt-out of Google Analytics cookies by the websites provided by Google:
https://tools.google.com/dlpage/gaoptout?hl=en
As provided in this Privacy Policy (Article 5), you can learn more about opt-out cookies by the website provided by Network Advertising Initiative:
http://www.networkadvertising.org
We inform you that in such case you will not be able to wholly use all functions of our website.
Close